Computer Science > Computation and Language
[Submitted on 26 Aug 2024]
Title:Probing Causality Manipulation of Large Language Models
View PDF HTML (experimental)Abstract:Large language models (LLMs) have shown various ability on natural language processing, including problems about causality. It is not intuitive for LLMs to command causality, since pretrained models usually work on statistical associations, and do not focus on causes and effects in sentences. So that probing internal manipulation of causality is necessary for LLMs. This paper proposes a novel approach to probe causality manipulation hierarchically, by providing different shortcuts to models and observe behaviors. We exploit retrieval augmented generation (RAG) and in-context learning (ICL) for models on a designed causality classification task. We conduct experiments on mainstream LLMs, including GPT-4 and some smaller and domain-specific models. Our results suggest that LLMs can detect entities related to causality and recognize direct causal relationships. However, LLMs lack specialized cognition for causality, merely treating them as part of the global semantic of the sentence.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.