Physics > Fluid Dynamics
[Submitted on 11 Sep 2024]
Title:Coupling Machine Learning Local Predictions with a Computational Fluid Dynamics Solver to Accelerate Transient Buoyant Plume Simulations
View PDF HTML (experimental)Abstract:Data-driven methods demonstrate considerable potential for accelerating the inherently expensive computational fluid dynamics (CFD) solvers. Nevertheless, pure machine-learning surrogate models face challenges in ensuring physical consistency and scaling up to address real-world problems. This study presents a versatile and scalable hybrid methodology, combining CFD and machine learning, to accelerate long-term incompressible fluid flow simulations without compromising accuracy. A neural network was trained offline using simulated data of various two-dimensional transient buoyant plume flows. The objective was to leverage local features to predict the temporal changes in the pressure field in comparable scenarios. Due to cell-level predictions, the methodology was successfully applied to diverse geometries without additional training. Pressure estimates were employed as initial values to accelerate the pressure-velocity coupling procedure. The results demonstrated an average improvement of 94% in the initial guess for solving the Poisson equation. The first pressure corrector acceleration reached a mean factor of 3, depending on the iterative solver employed. Our work reveals that machine learning estimates at the cell level can enhance the efficiency of CFD iterative linear solvers while maintaining accuracy. Although the scalability of the methodology to more complex cases has yet to be demonstrated, this study underscores the prospective value of domain-specific hybrid solvers for CFD.
Current browse context:
physics.flu-dyn
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.