Computer Science > Computation and Language
[Submitted on 13 Sep 2024 (v1), last revised 1 Oct 2024 (this version, v2)]
Title:Optimizing Rare Word Accuracy in Direct Speech Translation with a Retrieval-and-Demonstration Approach
View PDF HTML (experimental)Abstract:Direct speech translation (ST) models often struggle with rare words. Incorrect translation of these words can have severe consequences, impacting translation quality and user trust. While rare word translation is inherently challenging for neural models due to sparse learning signals, real-world scenarios often allow access to translations of past recordings on similar topics. To leverage these valuable resources, we propose a retrieval-and-demonstration approach to enhance rare word translation accuracy in direct ST models. First, we adapt existing ST models to incorporate retrieved examples for rare word translation, which allows the model to benefit from prepended examples, similar to in-context learning. We then develop a cross-modal (speech-to-speech, speech-to-text, text-to-text) retriever to locate suitable examples. We demonstrate that standard ST models can be effectively adapted to leverage examples for rare word translation, improving rare word translation accuracy over the baseline by 17.6% with gold examples and 8.5% with retrieved examples. Moreover, our speech-to-speech retrieval approach outperforms other modalities and exhibits higher robustness to unseen speakers. Our code is publicly available (this https URL).
Submission history
From: Danni Liu [view email][v1] Fri, 13 Sep 2024 17:38:03 UTC (7,822 KB)
[v2] Tue, 1 Oct 2024 13:06:20 UTC (7,824 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.