Computer Science > Computation and Language
[Submitted on 9 Sep 2024]
Title:Multilingual Dyadic Interaction Corpus NoXi+J: Toward Understanding Asian-European Non-verbal Cultural Characteristics and their Influences on Engagement
View PDF HTML (experimental)Abstract:Non-verbal behavior is a central challenge in understanding the dynamics of a conversation and the affective states between interlocutors arising from the interaction. Although psychological research has demonstrated that non-verbal behaviors vary across cultures, limited computational analysis has been conducted to clarify these differences and assess their impact on engagement recognition. To gain a greater understanding of engagement and non-verbal behaviors among a wide range of cultures and language spheres, in this study we conduct a multilingual computational analysis of non-verbal features and investigate their role in engagement and engagement prediction. To achieve this goal, we first expanded the NoXi dataset, which contains interaction data from participants living in France, Germany, and the United Kingdom, by collecting session data of dyadic conversations in Japanese and Chinese, resulting in the enhanced dataset NoXi+J. Next, we extracted multimodal non-verbal features, including speech acoustics, facial expressions, backchanneling and gestures, via various pattern recognition techniques and algorithms. Then, we conducted a statistical analysis of listening behaviors and backchannel patterns to identify culturally dependent and independent features in each language and common features among multiple languages. These features were also correlated with the engagement shown by the interlocutors. Finally, we analyzed the influence of cultural differences in the input features of LSTM models trained to predict engagement for five language datasets. A SHAP analysis combined with transfer learning confirmed a considerable correlation between the importance of input features for a language set and the significant cultural characteristics analyzed.
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.