Computer Science > Robotics
[Submitted on 22 Sep 2024]
Title:MEDiC: Autonomous Surgical Robotic Assistance to Maximizing Exposure for Dissection and Cautery
View PDF HTML (experimental)Abstract:Surgical automation has the capability to improve the consistency of patient outcomes and broaden access to advanced surgical care in underprivileged communities. Shared autonomy, where the robot automates routine subtasks while the surgeon retains partial teleoperative control, offers great potential to make an impact. In this paper we focus on one important skill within surgical shared autonomy: Automating robotic assistance to maximize visual exposure and apply tissue tension for dissection and cautery. Ensuring consistent exposure to visualize the surgical site is crucial for both efficiency and patient safety. However, achieving this is highly challenging due to the complexities of manipulating deformable volumetric tissues that are prevalent in this http URL address these challenges we propose \methodname, a framework for autonomous surgical robotic assistance to \methodfullname. We integrate a differentiable physics model with perceptual feedback to achieve our two key objectives: 1) Maximizing tissue exposure and applying tension for a specified dissection site through visual-servoing conrol and 2) Selecting optimal control positions for a dissection target based on deformable Jacobian analysis. We quantitatively assess our method through repeated real robot experiments on a tissue phantom, and showcase its capabilities through dissection experiments using shared autonomy on real animal tissue.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.