Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Sep 2024]
Title:Generalizing monocular colonoscopy image depth estimation by uncertainty-based global and local fusion network
View PDF HTML (experimental)Abstract:Objective: Depth estimation is crucial for endoscopic navigation and manipulation, but obtaining ground-truth depth maps in real clinical scenarios, such as the colon, is challenging. This study aims to develop a robust framework that generalizes well to real colonoscopy images, overcoming challenges like non-Lambertian surface reflection and diverse data distributions. Methods: We propose a framework combining a convolutional neural network (CNN) for capturing local features and a Transformer for capturing global information. An uncertainty-based fusion block was designed to enhance generalization by identifying complementary contributions from the CNN and Transformer branches. The network can be trained with simulated datasets and generalize directly to unseen clinical data without any fine-tuning. Results: Our method is validated on multiple datasets and demonstrates an excellent generalization ability across various datasets and anatomical structures. Furthermore, qualitative analysis in real clinical scenarios confirmed the robustness of the proposed method. Conclusion: The integration of local and global features through the CNN-Transformer architecture, along with the uncertainty-based fusion block, improves depth estimation performance and generalization in both simulated and real-world endoscopic environments. Significance: This study offers a novel approach to estimate depth maps for endoscopy images despite the complex conditions in clinic, serving as a foundation for endoscopic automatic navigation and other clinical tasks, such as polyp detection and segmentation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.