Computer Science > Computational Complexity
[Submitted on 24 Sep 2024]
Title:Hardness of Approximate Sperner and Applications to Envy-Free Cake Cutting
View PDFAbstract:Given a so called ''Sperner coloring'' of a triangulation of the $D$-dimensional simplex, Sperner's lemma guarantees the existence of a rainbow simplex, i.e. a simplex colored by all $D+1$ colors. However, finding a rainbow simplex was the first problem to be proven $\mathsf{PPAD}$-complete in Papadimitriou's classical paper introducing the class $\mathsf{PPAD}$ (1994). In this paper, we prove that the problem does not become easier if we relax ''all $D+1$ colors'' to allow some fraction of missing colors: in fact, for any constant $D$, finding even a simplex with just three colors remains $\mathsf{PPAD}$-complete!
Our result has an interesting application for the envy-free cake cutting from fair division. It is known that if agents value pieces of cake using general continuous functions satisfying a simple boundary condition (''a non-empty piece is better than an empty piece of cake''), there exists an envy-free allocation with connected pieces. We show that for any constant number of agents it is $\mathsf{PPAD}$-complete to find an allocation -- even using any constant number of possibly disconnected pieces -- that makes just three agents envy-free. Our results extend to super-constant dimension, number of agents, and number of pieces, as long as they are asymptotically bounded by any $\log^{1-\Omega(1)}(\epsilon)$, where $\epsilon$ is the precision parameter (side length for Sperner and approximate envy-free for cake cutting).
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.