Computer Science > Cryptography and Security
[Submitted on 25 Sep 2024]
Title:Investigating Privacy Attacks in the Gray-Box Setting to Enhance Collaborative Learning Schemes
View PDF HTML (experimental)Abstract:The notion that collaborative machine learning can ensure privacy by just withholding the raw data is widely acknowledged to be flawed. Over the past seven years, the literature has revealed several privacy attacks that enable adversaries to extract information about a model's training dataset by exploiting access to model parameters during or after training. In this work, we study privacy attacks in the gray-box setting, where the attacker has only limited access - in terms of view and actions - to the model. The findings of our investigation provide new insights for the development of privacy-preserving collaborative learning solutions. We deploy SmartCryptNN, a framework that tailors homomorphic encryption to protect the portions of the model posing higher privacy risks. Our solution offers a trade-off between privacy and efficiency, which varies based on the extent and selection of the model components we choose to protect. We explore it on dense neural networks, where through extensive evaluation of diverse datasets and architectures, we uncover instances where a favorable sweet spot in the trade-off can be achieved by safeguarding only a single layer of the network. In one of such instances, our approach trains ~4 times faster compared to fully encrypted solutions, while reducing membership leakage by 17.8 times compared to plaintext solutions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.