Computer Science > Information Theory
[Submitted on 7 Oct 2024 (v1), last revised 11 Nov 2024 (this version, v3)]
Title:High Information Density and Low Coverage Data Storage in DNA with Efficient Channel Coding Schemes
View PDF HTML (experimental)Abstract:DNA-based data storage has been attracting significant attention due to its extremely high data storage density, low power consumption, and long duration compared to conventional data storage media. Despite the recent advancements in DNA data storage technology, significant challenges remain. In particular, various types of errors can occur during the processes of DNA synthesis, storage, and sequencing, including substitution errors, insertion errors, and deletion errors. Furthermore, the entire oligo may be lost. In this work, we report a DNA-based data storage architecture that incorporates efficient channel coding schemes, including different types of error-correcting codes (ECCs) and constrained codes, for both the inner coding and outer coding for the DNA data storage channel. We also carried out large scale experiments to validate our proposed DNA-based data storage architecture. Specifically, 1.61 and 1.69 MB data were encoded into 30,000 oligos each, with information densities of 1.731 and 1.815, respectively. It has been found that the stored information can be fully recovered without any error at average coverages of 4.5 and 6.0, respectively. This experiment achieved the highest net information density and lowest coverage among existing DNA-based data storage experiments (with standard DNA), with data recovery rates and coverage approaching theoretical optima.
Submission history
From: Yi Ding [view email][v1] Mon, 7 Oct 2024 10:13:48 UTC (8,275 KB)
[v2] Tue, 8 Oct 2024 03:10:38 UTC (8,436 KB)
[v3] Mon, 11 Nov 2024 06:22:27 UTC (8,732 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.