PDF
Discussiones Mathematicae Graph Theory 28(1) (2008)
97-107
DOI: https://doi.org/10.7151/dmgt.1394
PARTITIONS OF A GRAPH INTO CYCLES CONTAINING A SPECIFIED LINEAR FOREST
Ryota Matsubara
Department of Mathematical Information Science | Hajime Matsumura
Kyoto Computer Gakuin |
Abstract
In this note, we consider the partition of a graph into cycles containing a specified linear forest. Minimum degree and degree sum conditions are given, which are best possible.Keywords: partition of a graph, vertex-disjoint cycle, 2-factor, linear forest.
2000 Mathematics Subject Classification: 05C38, 05C99.
References
[1] | S. Brandt, G. Chen, R.J. Faudree, R.J. Gould and L. Lesniak, Degree conditions for 2-factors, J. Graph Theory 24 (1997) 165-173, doi: 10.1002/(SICI)1097-0118(199702)24:2<165::AID-JGT4>3.0.CO;2-O. |
[2] | G. Chartrand and L. Lesniak, Graphs & Digraphs, 4th edition (Chapman & Hall, London, 2004). |
[3] | Y. Egawa, H. Enomoto, R.J. Faudree, H. Li and I. Schiermeyer, Two factors each component of which contains a specified vertex, J. Graph Theory 43 (2003) 188-198, doi: 10.1002/jgt.10113. |
[4] | Y. Egawa, R.J. Faudree, E. Györi, Y. Ishigami, R.H. Schelp and H. Wang, Vertex-disjoint cycles containing specified edges, Graphs Combin. 16 (2000) 81-92, doi: 10.1007/s003730050005. |
[5] | Y. Egawa and R. Matsubara, Vertex-disjoint cycles containing specified vertices in a graph, AKCE Int. J. Graphs Comb. 3 (1) (2006) 65-92. |
[6] | H. Enomoto, Graph partition problems into cycles and paths, Discrete Math. 233 (2001) 93-101, doi: 10.1016/S0012-365X(00)00229-6. |
[7] | H. Enomoto and H. Matsumura, Cycle-partition of a graph with specified vertices and edges, to appear in Ars Combinatoria. |
[8] | Y. Ishigami and H. Wang, An extension of a theorem on cycles containing specified independent edges, Discrete Math. 245 (2002) 127-137, doi: 10.1016/S0012-365X(01)00137-6. |
[9] | A. Kaneko and K. Yoshimoto, On a 2-factor with a specified edge in a graph satisfying the Ore condition, Discrete Math. 257 (2002) 445-461, doi: 10.1016/S0012-365X(02)00506-X. |
[10] | R. Matsubara and T. Sakai, Cycles and degenerate cycles through specified vertices, Far East J. Appl. Math. 20 (2005) 201-208. |
[11] | T. Sakai, Degree-sum conditions for graphs to have 2-factors with cycles through specified vertices, SUT J. Math. 38 (2002) 211-222. |
Received 2 October 2006
Revised 5 February 2007
Accepted 5 February 2007
Close