Jump to content

User:SchmiAlf/Testing

From Wikipedia, the free encyclopedia
Due to political and security concerns, German specialists were not allowed knowledge or access to any Soviet missile design. Therefore, once the Soviets had mastered understanding and production of the V-2 rocket in 1946–47, all German specialists were excluded from Soviet developments. Their work was conducted independently, including work on the G-1, which proceeded as a "draft plan".
neuer Absatz, zu ersetzen durch (vorheriger Absatz = Khimki)

End of German involvement at OKB-456 in 1950

[edit]
From around mid-1948, Germans at OKB-456 were also denied active involvement in the development of a next generation engines. They were still receiving various assignments, however were no longer able to see a "big picture". According to German authors [Przybilski], Germans participated in the development of the experimental KS-50 "Lilliput" engine [http://www.lpre.de/energomash/ED/index.htm#KS-50] [http://www.astronautix.com/k/ks-50.html] leading to the Soviet ED-140 engine [http://www.astronautix.com/e/ed-140.html], which could pave the way to the RD-110 engine -- a significantly scaled up version of the propulsion system from the German V-2 rocket. However all related information in the German source clearly came from a single Russian publication, [ed. Rakhmanin, V., Odnazhdy i Navsegda, (in Russian) Mashinostroenie, Moscow 1998] which in turn gives no credit to German engineers for the respective work. The time frame within KS-50 engine was developed and tested (1949) does not match the period, in which German specialists were actively involved into development work at OKB-456, according to the Russian sources. Therefore, the level of German contribution in the project is still open to interpretation. By the end of 1950, Germans who worked for OKB-456 were sent back to Germany. https://www.russianspaceweb.com/a4_team_moscow.html#okb456

Continued involvement at NII-88

[edit]
Due to political and security concerns, German specialists were not allowed knowledge or access to any Soviet missile design.[1][2] Therefore, once the Soviets had mastered understanding, launching procedures and production of the V-2 rocket in 1947, all German specialists were excluded from direct involvement in Soviet developments.[3] Their work was conducted independently, including work on the G-1, which proceeded as a "draft plan".[4] But Ustinov wanted to keep the availability of a creative staff of German specialists to serve as a stimulus for the Soviet work. [Chertik p.58]
transfer to Gorodomlya
The arguments that the German work had a "more than marginal influence and lasted until the end of 1949" are supported as follows:
  • German participation/contributions to scientific-technical meetings at NII-88 in December 1948, July 1949 in Gorodomlya (Russian Web Space) In Dec 1949, the Germans were not invited for the first time.
  • Siddiqis description "The end of the Road for the Germans" (p. 80-83) with many details of Soviet visits to Gorodomlya in 1948 and 1949, including high-ranking Ustinov and Korolew. These visits were not for fun but with a
  • This situation of sketching G-1 (R-10), G-2 (R-12), G-4 (R-14) and Soviet interest during 1948/1949 has been largely described by Irmgard Gröttrup's Rocket Wife (1959), Werner Albring's Gorodomlia (1991, German only), Kurt Magnus' Raketensklaven (1999, German only). Technical details are found in Encyclopedia Astronautica.
  • Ernest Schwiebert in USAF's Ballistic Missiles - 1954-1964: "The work of the captive German scientists and technicians served as a yardstick against which Soviet accomplishments could be measured, and the Soviets were capable of extracting those developments useful to their program and of discarding others which they had already surpassed," (quoted from Russian Web Space, id=56)
  • CIA report The R-14 Project, a Design of a Long Range Missile at Gorodomlya Island (RDP80-00810A001800090003-0, August 1953) with details for R-14 including the advantages/dimensions of the conical shape, use of very thin steel or aluminium for "single-shell self-containing structure" (now known as Balloon tank) with detailed calculation for the pressure level, detacheable warhead, use of one or four motors per rocket, etc. (most probably based on Konrad Toebe's interrogation, also compare to Olaf Przybilski's research)
  • CIA report Development of Guided Missiles at Bleicherode and Institute 88 (RDP80-00810A003300530005-2, January 1954) (based on Helmut Gröttrup's interrogation)
  • CIA report Soviet Capabilities and Probable Programs in the Guided Missile Field (RDP79R01012A008900020001-3), March 1957): "We believe that exploitation of the Germans, together with parallel and subsequent native efforts, enabled the USSR to make significant process in the development of ballistic missiles of short and medium ranges after 1948. In addition to the 25- and 35-ton thrust rocket motors which were available at that time, we believe that a 100-ton thrust motor was successfully developed by 1953." (The R-7 (rocket family), had a 100-ton motor RD-107 with four burning chamber, 4x 25 ton.)
  • CIA report Analysis of Soviet earth satellite and launching device (DOC_0000124270, November 1957). "The total thrust of the second Soviet satellite (Sputnik II) must have been 1,000 tons or more, and its weight at launch must have been 500,000 kg or 500 metric tons (if it is true that the payload weight was approximately 500 kg)." Gröttrup stated in his interrogation 1954: "Furthermore, it was generally held up to now that the ratio thrust/take-off weights should be approximately two. This assumption was wrong, since it did not take into account the dependence of the “empty” weight on the thrust for reasons of strength. <blanked name> discovered (although it must be admitted that <blanked name> investigations were very rough) that values as low as 1.2 for this ratio could give optimum results under certain conditions." In reality, the R-7 for Sputnik 2 had a launch weight of approx. 270 tons due to light-weight construction and used a ratio thrust/take-off weights of 1.4.
  • The Russian 70 Years of Swesda 1946-2016 document (2016) acknowledged the German contributions as follows: "The German experience in terms of basic research and practical engineering application became a good school for the Soviet scientists. Many valuable ideas were adopted from the German collective, which saved the Soviet rocket industry many years of development and mistakes. [...] In the technically simplified design of a single-stage rocket with a conical shape, many innovations were again implemented: For the first time there were no gas thrusters, the rocket was equipped with stages in longitudinal and transverse pitch, with a bundle of three engines as a propulsion block and engine control during acceleration."
  • System for the simultaneaous emptying of both tanks as proposed by Gröttrup in his CIA interrogation (id 23): "Detailed mathematical investigations showed that large losses in range occurred as soon as the mixture strength [of alcohol and oxygen] departed from its optimum value. This was not because of the relatively small resulting change in thrust, but because of change in the quantity of fuel remaining at cutoff. For this reason, rockets intended for maximum range were fitted with special fuel meters in both tanks. These meters regulated the fuel consumption so that both tanks became empty at the same time." This principle was later used with R-5 Pobeda and R-7 (see Система опорожнения баков in Russian Wikipedia) (of course never officially recognized as German invention).
The facts above proof that there were German "birthmarks" for the Soviet rocketry and that the German work fully continued until the end of 1949.

German influence on the ...

[edit]

Glushko, who was now Chief Designer of liquid-propellant rocket engines in OKB-456, used German expertise for mastering and improving the existing V-2 engine, internally called RD-100 (copy of V-2) and RD-101 (used for R-1) with a thrust of up to 267 kN. Further German ideas for increased thrust helped Glusko to develop RD-103 for the R-5 Pobeda with a thrust of 432 kN (500 tons) and higher efficiency.[5] However once this was accomplished Glushko no longer needed their expertise.[1] Due to political and security concerns, German specialists were not allowed knowledge or access to any Soviet missile design.[1][6] Therefore, once the Soviets had mastered understanding and production of the V-2 rocket in 1946–47, all German specialists were excluded from Soviet developments.[3] Their work was conducted independently, including work on the G-1, which proceeded as a "draft plan".[4]

Comparison of G-4 (R-14) design concept with R-7 boosters

Until early 1948 all German specialists working in Podlipki were transferred to Gorodomlya Island. In September 1948 test flights were carried on the R-1, the Soviet copy of the V-2 rocket, built with local materials. No German personnel were present for these tests at Kapustin Yar.[7][8]

Detailed genealogy of R-7 development history

In December 1948 the updated plan for the G-1 rocket was reviewed, which the German team had improved the range and accuracy. However major work on the G-1 was terminated by senior Soviet management.[9] A number of other studies were carried out by the German specialist between 1948 and 1950, including the G-1M, G-2, G-3, G-4 and G-5.[10] In October 1949 Korolev and Dmitry Ustinov, the then Soviet Minister of Armaments, visited the branch of NII-88 in Gorodomlya[11] to gather and understand German knowledge as much as possible to push the development of mid-range R-3 and R-5 Pobeda missiles. The concept of the G-4 targeted to build a long-range ballistic missile for a range of 3,000 km and a payload of 3 tons. The newly developed design scheme showed a number of changes compared to the V-2 and thus differed fundamentally from the rockets previously manufactured in the USSR. The newly chosen shape of a circular cone was intended to ensure increased aerodynamic stability so that the stabilization surfaces at the rear could be dispensed with. The position control was carried out by a swiveling engine.[12] At the same time, the German designers paid attention to radical simplification of the overall system and consistent weight savings in order to achieve the required reliability and range.[13][14] The R-7 boosters, developed from 1954, show a clear similarity with the G-4 concept, both in dimensions and shape. Only the engine was drafted as a single engine, while Glushko could not achieve this challenging goal and developed the RD-107 engine with four smaller engines. This R-7 design has also used details of the design for the oxygen and alcohol containers which also build the external skin of the boosters.[12]: pp. 11-14 

The later studies from 1950 were limited to initial designs, including diagrams and calculations. None of these studies were officially taken up by the Soviets. From early 1951 young Soviet engineers were sent to Gorodomlya Island for training purposes. By this time most of the German specialists were spending their time playing sports, gardening or reading.[15]






[[Datei:Vostok rocket drawing.png|mini|Wostok-Trägerrakete auf Basis der R-7 zum Start von Sputnik-1 mit konischer Form und Bündelung von fünf Triebwerken mit jeweils vier Brennkammern (1957)]] Im Oktober 1946 wurde Helmut Gröttrup zusammen mit 160 weiteren ausgewählten Wissenschaftlern und Spezialisten des Institut Nordhausen im Rahmen der Aktion Ossawakim nach Podlipki bei Moskau und auf die Insel Gorodomlja deportiert, um dort die Filiale 1 der Forschungs- und Entwicklungsstätte für Weltraumraketen NII-88 (russ. НИИ-88, научно-исследовательский институт) aufzubauen. Gleichzeitig wurden Fertigungsanlagen in der Sowjetischen Besatzungszone demontiert und in die Sowjetunion verbracht. Auf Basis dieser Vorarbeiten und weiterer Unterstützung des deutschen Kollektivs konnte Sergei Koroljow in Deutschland gefertigte A4 im Oktober 1947 erfolgreich auf dem Testgelände Kapustin Jar starten. Danach baute die sowjetische Fertigung ein modifiziertes A4 unter Verwendung sowjetischer Ersatzwerkstoffe mit der Bezeichnung R-1 auf und startete es erstmals am 13. Oktober 1948 erfolgreich auf dem Testgelände Kapustin Jar.[16]: 172–176  Durch den Nachbau der deutschen Geräte sowie die Zuarbeiten des verschleppten deutschen Kollektivs machte sich die sowjetische Rüstungsindustrie mit den Besonderheiten der Raketentechnik und -fertigung vertraut, bildete rasch eine große Anzahl an Ingenieuren und Technikern aus und beschleunigte damit den Aufbau der eigenen Forschung und Entwicklung.[16]: 149 

mini|Vergleich des konischen G-4 (R-14) Konzepts mit den R-7 Boostern Das Gewicht der sowjetischen Atomsprengköpfe benötigte allerdings einen leistungsfähigeren Antrieb. Hierfür konzipierte das deutsche Kollektiv im Zeitraum 1947 bis 1949 mit den Entwürfen der G-1[17] (russ. R-10), G-2[18] (russ. R-12) und G-4[19] (russ. R-14)[20] eine Reihe von konstruktiven Verbesserungen für die Erhöhung der Reichweite, die Verbesserung der Treffgenauigkeit und Vereinfachung für eine höhere Zuverlässigkeit:[21][22]

  • die Erhöhung des Triebwerksdrucks auf 60 atü für einen besseren Wirkungsgrad (Entwicklung des deutschen Kollektivs in Chimki unter Gluschko)[23]
  • die Beschränkung der Beschleunigung in der späten Antriebsphase zur Reduzierung der Kräfte und damit des Gewichts mit verbesserter Treffgenauigkeit durch genauere Abschaltung[24]: Pkt. 23 
  • gerade Antriebsbahn mit Fernlenkverfahren durch Peilstrahlen und genaue Steuerung des Brennschlusses
  • verbesserte Kreiselsysteme inkl. zugehöriger Simulationssysteme[16]: S. 178–179 
  • die Bündelung von Raketentriebwerken zusammen mit der Möglichkeit der Kompensation eines Triebwerksausfall durch Abschalten des symmetrisch gegenüberliegenden Triebwerks (bei der späteren Interkontinentalrakete R-7 und der Sputnik-Trägerrakete wurden 4x4 Brennkammern für die erste Stufe als RD-107 sowie 4 Brennkammern als RD-108 für die zentrale Stufe gebündelt)[22]
  • die Vektorsteuerung durch Schwenken der Triebwerke anstelle der aufwändigen Strahlruder aus Graphit und aerodynamisch ungünstiger Luftruder[16]: S. 168, 211  (erstmals angewandt beim Triebwerk RD-170 für die wiederverwendbare Trägerrakete Energija)
  • die Drallstabilisierung durch schwenkbare Vernierdüsen, die mit dem Turbinenabgas arbeiten[25]: Pkt. 50  (erstmals angewandt beim RD-107 für die R-7)
  • die konische Form des Raketenkörpers (mit 8 Grad Kegelwinkel) für eine stabile Aerodynamik (ohne aufwendige Windkanalversuche zur Optimierung über den gesamten Geschwindigkeitsbereich und zugehöriger Tanklast)[26][19][25]: Pkt. 50  (diese Bauform wurde für die vier Boosterraketen der R-7 angewandt)[27]
  • die Verwendung der innendruckstabilisierten Tankwandung als dünnwandige selbsttragende Struktur (<2 mm) zur Gewichtsreduzierung[16]: S. 177 [25]: Pkt. 6a, 10b, 26–23 
  • Anordnung des Sauerstofftanks oberhalb des Brennstofftanks zur Verbesserung der Schwerpunktslage[24]: Pkt. 21  (erstmals genutzt bei R-5)
  • die Verwendung gekühlter Verbrennungsgase des Raketentriebwerks für den Antrieb der Turbopumpen (anstelle separater Gasgeneratoren)[28]: S. 209–215 [24]: Pkt. 18 
  • Reduzierung des Schub-/Gewichtsverhältnisses von ursprünglich 2,0 auf 1,2 zur Optimierung der Reichweite[24]: Pkt. 25  (die R-7 für Sputnik startete mit einem Verhältnis von 1,4)
  • System zur Steuerung der vollständigen synchronen Entleerung des Treibstoff- und Sauerstoffstofftanks bei optimalem Mischungsverhältnis (variables Mischungsverhältnis) zur Optimierung der Reichweite[24]: Pkt. 23  (erstmals für R-7 verwendet)[29][30]

Koroljow verwendete Teile dieser Vorschläge für die sowjetischen Weiterentwicklungen R2, R-3, R-5 und R-7.[31] Aus politischen Gründen wurden jedoch die Beiträge des deutschen Kollektivs zur sowjetischen Raketenentwicklung in der Öffentlichkeit lange Zeit als unbedeutend eingestuft.[32][33] Sie bereiteten die Schritte zur Entwicklung der Interkontinentalrakete (MBR) R-7 vor, die im August 1957 erfolgreich getestet wurde und im November 1957 den weltweit ersten Satelliten in eine Umlaufbahn beförderte. 2016 bestätigte das Werk Svezda (russ. Звезда), das russische Nachfolgewerk der Filiale auf der Insel Gorodomlja (heute Solnetschny), die Bedeutung der deutschen Beiträge: „Die deutsche Erfahrung hinsichtlich Grundlagenforschung und praktischer ingenieurmäßiger Anwendung wurde eine gute Schule für die sowjetischen Wissenschaftler. Vom deutschen Kollektiv wurden viele wertvolle Ideen übernommen, die der sowjetischen Raketenindustrie viele Entwicklungsjahre und Fehler ersparten. […] In der technisch vereinfachten Konstruktion einer einstufigen Rakete mit konischer Form wurden erneut viele Innovationen umgesetzt: Zum ersten Mal gab es keine Gasstrahlruder, die Rakete war mit Stufen in längslaufender und querlaufender Teilung versehen, mit einem Bündel von drei Triebwerken als Antriebsblock und einer Triebwerksregelung während der Beschleunigung.“[34]

References

[edit]
  1. ^ a b c Chertok 2005, p. 57 Vol 2.
  2. ^ Neufeld, Michael (2012). "The Nazi aerospace exodus: towards a global, transnational history" (PDF). History and Technology (28:1): 57–58. Archived (PDF) from the original on 2022-06-25. Retrieved 2022-07-03.
  3. ^ a b Baker & Zak 2013, p. 13.
  4. ^ a b Siddiqi 2000, p. 58-60,83.
  5. ^ Pryzybilski, Olaf H. (2002). "The Germans and the Development of Rocket Engines in the USSR" (PDF). Volume 55. Journal of the British Interplanetary Society. pp. 404–427. Retrieved 2022-10-03. The German proposals led to phased progress in Soviet engine technology and met the requirements of chief rocket designer Korolev.
  6. ^ Neufeld, Michael (2012). "The Nazi aerospace exodus: towards a global, transnational history" (PDF). History and Technology (28:1): 57–58. Archived (PDF) from the original on 2022-06-25. Retrieved 2022-07-03.
  7. ^ Siddiqi 2000, p. 60-61.
  8. ^ Chertok 2005, p. 128 Vol 2.
  9. ^ Siddiqi 2000, p. 63.
  10. ^ Korolev, Alexander (2019). "Начало ракетных работ на Городомле" [Start of rocket work at Gorodomlya] (in Russian). Retrieved 2022-09-29.
  11. ^ Korolev, Alexander (2019). "Начало ракетных работ на Городомле" [Start of rocket work at Gorodomlya] (in Russian). Retrieved 2022-09-29. On April 9, 1949, Minister of Armaments Dmitry Ustinov arrived in Gorodomlya on a visit. He gave a new task – as soon as possible to design a rocket capable of carrying a payload of three tons over a distance of 3000 kilometers. This missile received the index G-4 (R-14). As it turned out much later, he gave the same task to Korolev (R-3 rocket). In October 1949, Ustinov again visited Gorodomlya and was interested in the progress of work. Korolev also visited the island with him. By December 1949, two projects had been significantly improved: a single-stage ballistic missile (R-14,) and a glider equipped with a rocket booster and a jet engine (R-15).
  12. ^ a b "CIA Information Report. The R-14 Project, a Design of a Long Range Missile at Gorodomlya Island" (PDF). CIA (PDF). 1953-08-26. Retrieved 2023-08-15.
  13. ^ Uhl 2001, p. 167-168.
  14. ^ Magnus, Kurt (1993). Raketensklaven. Deutsche Forscher hinter rotem Stacheldraht [Rocket slaves: German research behind red barbwire] (in German). Stuttgart: Deutsche Verlagsanstalt. pp. 202–211. ISBN 978-3421066350.
  15. ^ Siddiqi 2000, p. 63,80–82.
  16. ^ a b c d e Cite error: The named reference Uhl was invoked but never defined (see the help page).
  17. ^ {{Astronautix}} – G-1 als Entwurf für R-2
  18. ^ {{Astronautix}} – G-2 als Entwurf für R-12
  19. ^ a b {{Astronautix}} – G-4 als Entwurf für R-3, R-10 und R-14
  20. ^ Die Bezeichnungen R-12 und R-14 haben keine Übereinstimmung mit den späteren sowjetischen Raketen R-12 (SS-4 Sandal) und R-14 (SS-5 Skean).
  21. ^ Helmut Gröttrup (1958-04), Deutsche Gesellschaft für Raketentechnik und Raumfahrt (ed.), "Aus den Arbeiten des deutschen Raketen-Kollektivs in der Sowjet-Union", Raketentechnik und Raumfahrtforschung, no. 2, pp. 58–62 {{citation}}: Check date values in: |date= (help)
  22. ^ a b Jürgen Michels, Olaf Przybilski (1997-01-01), Peenemünde und seine Erben in Ost und West: Entwicklung und Weg deutscher Geheimwaffen (in German), Bonn: Bernard & Graefe, ISBN 978-3-763-75960-6 {{citation}}: Unknown parameter |umfang= ignored (help)
  23. ^ Olaf Przybilski (1999). "Die Deutschen und die Raketentriebwerksentwicklung in der UdSSR" (PDF; 5,75 MB). Luft- und Raumfahrt. Retrieved 2022-10-03. {{cite web}}: Unknown parameter |kommentar= ignored (help)
  24. ^ a b c d e "Development of Guided Missiles at Bleicherode and Institute 88" (PDF). CIA. 1954-01-22. Retrieved 2023-08-25. {{cite web}}: Unknown parameter |kommentar= ignored (help)
  25. ^ a b c "The R-14 Project, a Design of a Long Range Missile at Gorodomlya Island" (PDF). CIA. 1953-08-26. Retrieved 2023-08-25. {{cite web}}: Unknown parameter |kommentar= ignored (help)
  26. ^ Cite error: The named reference Albring was invoked but never defined (see the help page).
  27. ^ Olaf Przybilski (2017-02-07). "Helmut Gröttrups Konstruktionsphilosophien für Raketen" (PDF). Retrieved 2023-08-31.
  28. ^ Cite error: The named reference Magnus was invoked but never defined (see the help page).
  29. ^ "Система опорожнения баков". Wikipedia (in Russian). Retrieved 2023-08-25. {{cite web}}: Unknown parameter |kommentar= ignored (help)
  30. ^ Boris Jewsejewitsch Tschertok (2006) [1995], Rockets and People: Creating a Rocket Industry (NASA SP-2006-4110) [Ракеты и люди] (PDF) (in Russian), translated by Assif A. Siddiqi, p. 292 {{citation}}: Unknown parameter |kommentar= ignored (help)
  31. ^ "R-7: Die erfolgreichste Rakete der Geschichte" (Video; 14:28 min). Techsperimente. 2023-04-16. Retrieved 2023-08-15. {{cite web}}: Unknown parameter |kommentar= ignored (help)
  32. ^ Anatoly Zak (2012-08-12). "German contribution in the Soviet rocketry: Myth and Reality". Retrieved 2019-05-11. striking resemblance between a cone-like aerodynamic shape proposed by the Gröttrup team for several of its rockets and Korolev's own designs, which appeared in metal years later. Korolev's largest rockets – the R-7 and the ill-fated N1 moon rocket, both featured exotic conical shape
  33. ^ Boris E. Tschertok (1998-06-01), Raketen und Menschen (Deutsche Raketen in Sowjethand), vol. 1, Mockrehna: Elbe-Dnjepr-Verlag, ISBN 978-3-933395-00-9 {{citation}}: Unknown parameter |umfang= ignored (help)
  34. ^ Jelena Borisova (2016) [2016], Zavod Zvezda (ed.), Festschrift zum 70. Jahrestag der Gründung Gorodomlias 2016. Aus der Geschichte der Filiale FGUP NPZAP im Akademika N. A. Piljugin [Звездные страницы] (in Russian), Solnetschny, retrieved 2023-06-24{{citation}}: CS1 maint: location missing publisher (link)