Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Asf1 (anti-silencing function 1), a well conserved protein from yeast to humans, acts as a histone chaperone and is predicted to participate in a variety of chromatin-mediated cellular processes. To investigate the physiological role of vertebrate Asf1 in vivo, we generated a conditional Asf1-deficient mutant from chicken DT40 cells. Induction of Asf1 depletion resulted in the accumulation of cells in S phase with decreased DNA replication and increased mitotic aberrancy forming multipolar spindles, leading to cell death. In addition, nascent chromatin in Asf1-depleted cells showed increased nuclease sensitivity, indicating impaired nucleosome assembly during DNA replication. Complementation analyses revealed that the functional domain of Asf1 for cell viability was confined to the N-terminal core domain (amino acids 1-155) that is a binding platform for histones H3/H4, CAF-1p60, and HIRA, whereas Asf1 mutant proteins, abolishing binding abilities with both p60 and HIRA, exhibit no effect on viability. These results together indicate that the vertebrate Asf1 plays a crucial role in replication-coupled chromatin assembly, cell cycle progression, and cellular viability and provide a clue of a possible role in a CAF-1- and HIRA-independent chromatin-modulating process for cell proliferation.

References 


Articles referenced by this article (49)


Show 10 more references (10 of 49)

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Article citations


Go to all (66) article citations

Data 


Data behind the article

This data has been text mined from the article, or deposited into data resources.