Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Purpose/results/discussion. Rearrangement of the EWS gene with an ETS oncogene by chromosomal translocation is a hallmark of the Ewing family of tumors (EFT). Detectability, incidence, tumor specificity and variability of this aberration have been matters of intense investigation in recent years. A number of related alterations have also been found in other malignancies. The common consequence of these gene rearrangements is the generation of an aberrant transcription factor. In EFT, the ETS partner is responsible for target recognition. However, synergistic and possibly tissue-restricted transcription factors interacting with either the EWS or the ETS portion may influence target selection. Minimal domains of both fusion partners were defined that have proved necessary for the in vitro transformation of murine fibroblasts. These functional studies suggest a role for aberrant transcriptional regulation of transforming target genes by the chimeric transcription factors. Also, fusion of the two unrelated protein domains may affect overall protein conformation and consequently DNA binding specificity. Recent evidence suggests that EWS, when fused to a transcription factor, interacts with different partners than germ-line EWS. Variability in EWS-ETS gene fusions has recently been demonstrated to correlate with clinical outcome. This finding may reflect functional differences of the individual chimeric transcription factors. Alternatively, type and availability of specific recombinases at different time-points of stem cell development or in different stem cell lineages may determine fusion type. Studies on EFT cell lines using EWS-ETS antagonists do suggest a rate-limiting essential role for the gene rearrangement in the self-renewal capacity of EFT cells. The presence of additional aberrations varying in number and type that may account for immortalization and full transformation is postulated. Knowledge about such secondary alterations may provide valuable prognostic markers that could be used for treatment stratification.

Free full text 


Logo of sarcomaLink to Publisher's site
Sarcoma. 1998 Mar; 2(1): 3–17.
PMCID: PMC2395372
PMID: 18521227

Progress in the Molecular Biology of Ewing Tumors

Abstract

Purpose/results/discussion. Rearrangement of the EWS gene with an ETS oncogene by chromosomal translocation is a hallmark of the Ewing family of tumors (EFT). Detectability, incidence, tumor specificity and variability of this aberration have been matters of intense investigation in recent years. A number of related alterations have also been found in other malignancies. The common consequence of these gene rearrangements is the generation of an aberrant transcription factor. In EFT, the ETS partner is responsible for target recognition. However, synergistic and possibly tissue-restricted transcription factors interacting with either the EWS or the ETS portion may influence target selection. Minimal domains of both fusion partners were defined that have proved necessary for the in vitro transformation of murine fibroblasts. These functional studies suggest a role for aberrant transcriptional regulation of transforming target genes by the chimeric transcription factors. Also, fusion of the two unrelated protein domains may affect overall protein conformation and consequently DNA binding specificity. Recent evidence suggests that EWS, when fused to a transcription factor, interacts with different partners than germ-line EWS. Variability in EWS–ETS gene fusions has recently been demonstrated to correlate with clinical outcome. This finding may reflect functional differences of the individual chimeric transcription factors. Alternatively, type and availability of specific recombinases at different time-points of stem cell development or in different stem cell lineages may determine fusion type. Studies on EFT cell lines using EWS–ETS antagonists do suggest a rate-limiting essential role for the gene rearrangement in the self-renewal capacity of EFT cells. The presence of additional aberrations varying in number and type that may account for immortalization and full transformation is postulated. Knowledge about such secondary alterations may provide valuable prognostic markers that could be used for treatment stratification.

Full Text

The Full Text of this article is available as a PDF (335K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Turc-Carel C, Aurias A, Mugneret F, Lizard S, Sidaner I, Volk C, Thiery JP, Olschwang S, Philip I, Berger MP, et al. Chromosomes in Ewing's sarcoma. I. An evaluation of 85 cases of remarkable consistency of t(11;22)(q24;q12). Cancer Genet Cytogenet. 1988 Jun;32(2):229–238. [Abstract] [Google Scholar]
  • Aurias A. Données cytogénétiques dans les sarcomes des os et des tissus mous. Bull Cancer. 1988;75(5):423–429. [Abstract] [Google Scholar]
  • Turc-Carel CS. Apport de la cytogénétique au diagnostic du sarcome d'Ewing et des tumeurs à petites cellules rondes. Bull Cancer. 1991 Jan;78(1):77–84. [Abstract] [Google Scholar]
  • Hamilton G, Fellinger EJ, Schratter I, Fritsch A. Characterization of a human endocrine tissue and tumor-associated Ewing's sarcoma antigen. Cancer Res. 1988 Nov 1;48(21):6127–6131. [Abstract] [Google Scholar]
  • Banting GS, Pym B, Darling SM, Goodfellow PN. The MIC2 gene product: epitope mapping and structural prediction analysis define an integral membrane protein. Mol Immunol. 1989 Feb;26(2):181–188. [Abstract] [Google Scholar]
  • Kovar H, Dworzak M, Strehl S, Schnell E, Ambros IM, Ambros PF, Gadner H. Overexpression of the pseudoautosomal gene MIC2 in Ewing's sarcoma and peripheral primitive neuroectodermal tumor. Oncogene. 1990 Jul;5(7):1067–1070. [Abstract] [Google Scholar]
  • Ambros IM, Ambros PF, Strehl S, Kovar H, Gadner H, Salzer-Kuntschik M. MIC2 is a specific marker for Ewing's sarcoma and peripheral primitive neuroectodermal tumors. Evidence for a common histogenesis of Ewing's sarcoma and peripheral primitive neuroectodermal tumors from MIC2 expression and specific chromosome aberration. Cancer. 1991 Apr 1;67(7):1886–1893. [Abstract] [Google Scholar]
  • Fellinger EJ, Garin-Chesa P, Triche TJ, Huvos AG, Rettig WJ. Immunohistochemical analysis of Ewing's sarcoma cell surface antigen p30/32MIC2. Am J Pathol. 1991 Aug;139(2):317–325. [Europe PMC free article] [Abstract] [Google Scholar]
  • Levy R, Dilley J, Fox RI, Warnke R. A human thymus-leukemia antigen defined by hybridoma monoclonal antibodies. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6552–6556. [Europe PMC free article] [Abstract] [Google Scholar]
  • Dworzak MN, Fritsch G, Buchinger P, Fleischer C, Printz D, Zellner A, Schöllhammer A, Steiner G, Ambros PF, Gadner H. Flow cytometric assessment of human MIC2 expression in bone marrow, thymus, and peripheral blood. Blood. 1994 Jan 15;83(2):415–425. [Abstract] [Google Scholar]
  • Riopel M, Dickman PS, Link MP, Perlman EJ. MIC2 analysis in pediatric lymphomas and leukemias. Hum Pathol. 1994 Apr;25(4):396–399. [Abstract] [Google Scholar]
  • Zucman J, Delattre O, Desmaze C, Plougastel B, Joubert I, Melot T, Peter M, De Jong P, Rouleau G, Aurias A, et al. Cloning and characterization of the Ewing's sarcoma and peripheral neuroepithelioma t(11;22) translocation breakpoints. Genes Chromosomes Cancer. 1992 Nov;5(4):271–277. [Abstract] [Google Scholar]
  • Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, Kovar H, Joubert I, de Jong P, Rouleau G, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature. 1992 Sep 10;359(6391):162–165. [Abstract] [Google Scholar]
  • Adams V, Hany MA, Schmid M, Hassam S, Briner J, Niggli FK. Detection of t(11;22)(q24;q12) translocation breakpoint in paraffin-embedded tissue of the Ewing's sarcoma family by nested reverse transcription-polymerase chain reaction. Diagn Mol Pathol. 1996 Jun;5(2):107–113. [Abstract] [Google Scholar]
  • Delattre O, Zucman J, Melot T, Garau XS, Zucker JM, Lenoir GM, Ambros PF, Sheer D, Turc-Carel C, Triche TJ, et al. The Ewing family of tumors--a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med. 1994 Aug 4;331(5):294–299. [Abstract] [Google Scholar]
  • Scotlandi K, Serra M, Manara MC, Benini S, Sarti M, Maurici D, Lollini PL, Picci P, Bertoni F, Baldini N. Immunostaining of the p30/32MIC2 antigen and molecular detection of EWS rearrangements for the diagnosis of Ewing's sarcoma and peripheral neuroectodermal tumor. Hum Pathol. 1996 Apr;27(4):408–416. [Abstract] [Google Scholar]
  • Zoubek A, Dockhorn-Dworniczak B, Delattre O, Christiansen H, Niggli F, Gatterer-Menz I, Smith TL, Jürgens H, Gadner H, Kovar H. Does expression of different EWS chimeric transcripts define clinically distinct risk groups of Ewing tumor patients? J Clin Oncol. 1996 Apr;14(4):1245–1251. [Abstract] [Google Scholar]
  • Jeon IS, Davis JN, Braun BS, Sublett JE, Roussel MF, Denny CT, Shapiro DN. A variant Ewing's sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene. 1995 Mar 16;10(6):1229–1234. [Abstract] [Google Scholar]
  • Kaneko Y, Yoshida K, Handa M, Toyoda Y, Nishihira H, Tanaka Y, Sasaki Y, Ishida S, Higashino F, Fujinaga K. Fusion of an ETS-family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosomes Cancer. 1996 Feb;15(2):115–121. [Abstract] [Google Scholar]
  • Peter M, Couturier J, Pacquement H, Michon J, Thomas G, Magdelenat H, Delattre O. A new member of the ETS family fused to EWS in Ewing tumors. Oncogene. 1997 Mar 13;14(10):1159–1164. [Abstract] [Google Scholar]
  • Sorensen PH, Lessnick SL, Lopez-Terrada D, Liu XF, Triche TJ, Denny CT. A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet. 1994 Feb;6(2):146–151. [Abstract] [Google Scholar]
  • Urano F, Umezawa A, Hong W, Kikuchi H, Hata J. A novel chimera gene between EWS and E1A-F, encoding the adenovirus E1A enhancer-binding protein, in extraosseous Ewing's sarcoma. Biochem Biophys Res Commun. 1996 Feb 15;219(2):608–612. [Abstract] [Google Scholar]
  • Zucman J, Melot T, Desmaze C, Ghysdael J, Plougastel B, Peter M, Zucker JM, Triche TJ, Sheer D, Turc-Carel C, et al. Combinatorial generation of variable fusion proteins in the Ewing family of tumours. EMBO J. 1993 Dec;12(12):4481–4487. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ladanyi M, Lewis R, Garin-Chesa P, Rettig WJ, Huvos AG, Healey JH, Jhanwar SC. EWS rearrangement in Ewing's sarcoma and peripheral neuroectodermal tumor. Molecular detection and correlation with cytogenetic analysis and MIC2 expression. Diagn Mol Pathol. 1993 Sep;2(3):141–146. [Abstract] [Google Scholar]
  • Sorensen PH, Shimada H, Liu XF, Lim JF, Thomas G, Triche TJ. Biphenotypic sarcomas with myogenic and neural differentiation express the Ewing's sarcoma EWS/FLI1 fusion gene. Cancer Res. 1995 Mar 15;55(6):1385–1392. [Abstract] [Google Scholar]
  • Thorner P, Squire J, Chilton-MacNeil S, Marrano P, Bayani J, Malkin D, Greenberg M, Lorenzana A, Zielenska M. Is the EWS/FLI-1 fusion transcript specific for Ewing sarcoma and peripheral primitive neuroectodermal tumor? A report of four cases showing this transcript in a wider range of tumor types. Am J Pathol. 1996 Apr;148(4):1125–1138. [Europe PMC free article] [Abstract] [Google Scholar]
  • Sorensen PH, Wu JK, Berean KW, Lim JF, Donn W, Frierson HF, Reynolds CP, López-Terrada D, Triche TJ. Olfactory neuroblastoma is a peripheral primitive neuroectodermal tumor related to Ewing sarcoma. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1038–1043. [Europe PMC free article] [Abstract] [Google Scholar]
  • Devaney K, Wenig BM, Abbondanzo SL. Olfactory neuroblastoma and other round cell lesions of the sinonasal region. Mod Pathol. 1996 Jun;9(6):658–663. [Abstract] [Google Scholar]
  • Burchill SA, Wheeldon J, Cullinane C, Lewis IJ. EWS-FLI1 fusion transcripts identified in patients with typical neuroblastoma. Eur J Cancer. 1997 Feb;33(2):239–243. [Abstract] [Google Scholar]
  • Desmaze C, Zucman J, Delattre O, Melot T, Thomas G, Aurias A. Interphase molecular cytogenetics of Ewing's sarcoma and peripheral neuroepithelioma t(11;22) with flanking and overlapping cosmid probes. Cancer Genet Cytogenet. 1994 May;74(1):13–18. [Abstract] [Google Scholar]
  • Desmaze C, Zucman J, Delattre O, Thomas G, Aurias A. Unicolor and bicolor in situ hybridization in the diagnosis of peripheral neuroepithelioma and related tumors. Genes Chromosomes Cancer. 1992 Jul;5(1):30–34. [Abstract] [Google Scholar]
  • Crozat A, Aman P, Mandahl N, Ron D. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature. 1993 Jun 17;363(6430):640–644. [Abstract] [Google Scholar]
  • Rabbitts TH, Forster A, Larson R, Nathan P. Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet. 1993 Jun;4(2):175–180. [Abstract] [Google Scholar]
  • Zinszner H, Albalat R, Ron D. A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP. Genes Dev. 1994 Nov 1;8(21):2513–2526. [Abstract] [Google Scholar]
  • Bertolotti A, Lutz Y, Heard DJ, Chambon P, Tora L. hTAF(II)68, a novel RNA/ssDNA-binding protein with homology to the pro-oncoproteins TLS/FUS and EWS is associated with both TFIID and RNA polymerase II. EMBO J. 1996 Sep 16;15(18):5022–5031. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hackl W, Lührmann R. Molecular cloning and subcellular localisation of the snRNP-associated protein 69KD, a structural homologue of the proto-oncoproteins TLS and EWS with RNA and DNA-binding properties. J Mol Biol. 1996 Dec 20;264(5):843–851. [Abstract] [Google Scholar]
  • Alliegro MC, Alliegro MA. A nuclear protein regulated during the transition from active to quiescent phenotype in cultured endothelial cells. Dev Biol. 1996 Mar 15;174(2):288–297. [Abstract] [Google Scholar]
  • Immanuel D, Zinszner H, Ron D. Association of SARFH (sarcoma-associated RNA-binding fly homolog) with regions of chromatin transcribed by RNA polymerase II. Mol Cell Biol. 1995 Aug;15(8):4562–4571. [Europe PMC free article] [Abstract] [Google Scholar]
  • Stolow DT, Haynes SR. Cabeza, a Drosophila gene encoding a novel RNA binding protein, shares homology with EWS and TLS, two genes involved in human sarcoma formation. Nucleic Acids Res. 1995 Mar 11;23(5):835–843. [Europe PMC free article] [Abstract] [Google Scholar]
  • Burd CG, Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins. Science. 1994 Jul 29;265(5172):615–621. [Abstract] [Google Scholar]
  • Courey AJ, Tjian R. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell. 1988 Dec 2;55(5):887–898. [Abstract] [Google Scholar]
  • Plougastel B, Zucman J, Peter M, Thomas G, Delattre O. Genomic structure of the EWS gene and its relationship to EWSR1, a site of tumor-associated chromosome translocation. Genomics. 1993 Dec;18(3):609–615. [Abstract] [Google Scholar]
  • Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, Kovar H, Joubert I, de Jong P, Rouleau G, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature. 1992 Sep 10;359(6391):162–165. [Abstract] [Google Scholar]
  • Calvio C, Neubauer G, Mann M, Lamond AI. Identification of hnRNP P2 as TLS/FUS using electrospray mass spectrometry. RNA. 1995 Sep;1(7):724–733. [Europe PMC free article] [Abstract] [Google Scholar]
  • Alliegro MC, Alliegro MA. Identification of a new coiled body component. Exp Cell Res. 1996 Sep 15;227(2):386–390. [Abstract] [Google Scholar]
  • Zinszner H, Immanuel D, Yin Y, Liang FX, Ron D. A topogenic role for the oncogenic N-terminus of TLS: nucleolar localization when transcription is inhibited. Oncogene. 1997 Jan 30;14(4):451–461. [Abstract] [Google Scholar]
  • Panagopoulos I, Höglund M, Mertens F, Mandahl N, Mitelman F, Aman P. Fusion of the EWS and CHOP genes in myxoid liposarcoma. Oncogene. 1996 Feb 1;12(3):489–494. [Abstract] [Google Scholar]
  • Ichikawa H, Shimizu K, Hayashi Y, Ohki M. An RNA-binding protein gene, TLS/FUS, is fused to ERG in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res. 1994 Jun 1;54(11):2865–2868. [Abstract] [Google Scholar]
  • Panagopoulos I, Aman P, Fioretos T, Höglund M, Johansson B, Mandahl N, Heim S, Behrendtz M, Mitelman F. Fusion of the FUS gene with ERG in acute myeloid leukemia with t(16;21)(p11;q22). Genes Chromosomes Cancer. 1994 Dec;11(4):256–262. [Abstract] [Google Scholar]
  • Kong XT, Ida K, Ichikawa H, Shimizu K, Ohki M, Maseki N, Kaneko Y, Sako M, Kobayashi Y, Tojou A, et al. Consistent detection of TLS/FUS-ERG chimeric transcripts in acute myeloid leukemia with t(16;21)(p11;q22) and identification of a novel transcript. Blood. 1997 Aug 1;90(3):1192–1199. [Abstract] [Google Scholar]
  • Clark J, Benjamin H, Gill S, Sidhar S, Goodwin G, Crew J, Gusterson BA, Shipley J, Cooper CS. Fusion of the EWS gene to CHN, a member of the steroid/thyroid receptor gene superfamily, in a human myxoid chondrosarcoma. Oncogene. 1996 Jan 18;12(2):229–235. [Abstract] [Google Scholar]
  • Ladanyi M, Gerald W. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res. 1994 Jun 1;54(11):2837–2840. [Abstract] [Google Scholar]
  • Zucman J, Delattre O, Desmaze C, Epstein AL, Stenman G, Speleman F, Fletchers CD, Aurias A, Thomas G. EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nat Genet. 1993 Aug;4(4):341–345. [Abstract] [Google Scholar]
  • Labelle Y, Zucman J, Stenman G, Kindblom LG, Knight J, Turc-Carel C, Dockhorn-Dworniczak B, Mandahl N, Desmaze C, Peter M, et al. Oncogenic conversion of a novel orphan nuclear receptor by chromosome translocation. Hum Mol Genet. 1995 Dec;4(12):2219–2226. [Abstract] [Google Scholar]
  • Zucman-Rossi J, Batzer MA, Stoneking M, Delattre O, Thomas G. Interethnic polymorphism of EWS intron 6: genome plasticity mediated by Alu retroposition and recombination. Hum Genet. 1997 Mar;99(3):357–363. [Abstract] [Google Scholar]
  • Rüdiger NS, Gregersen N, Kielland-Brandt MC. One short well conserved region of Alu-sequences is involved in human gene rearrangements and has homology with prokaryotic chi. Nucleic Acids Res. 1995 Jan 25;23(2):256–260. [Europe PMC free article] [Abstract] [Google Scholar]
  • Parkin DM, Stiller CA, Nectoux J. International variations in the incidence of childhood bone tumours. Int J Cancer. 1993 Feb 1;53(3):371–376. [Abstract] [Google Scholar]
  • Stiller CA, Parkin DM. Geographic and ethnic variations in the incidence of childhood cancer. Br Med Bull. 1996 Oct;52(4):682–703. [Abstract] [Google Scholar]
  • Bhagirath T, Abe S, Nojima T, Yoshida MC. Molecular analysis of a t(11;22) translocation junction in a case of Ewing's sarcoma. Genes Chromosomes Cancer. 1995 Jun;13(2):126–132. [Abstract] [Google Scholar]
  • Liu J, Nau MM, Zucman-Rossi J, Powell JI, Allegra CJ, Wright JJ. LINE-I element insertion at the t(11;22) translocation breakpoint of a desmoplastic small round cell tumor. Genes Chromosomes Cancer. 1997 Mar;18(3):232–239. [Abstract] [Google Scholar]
  • Peter M, Mugneret F, Aurias A, Thomas G, Magdelenat H, Delattre O. An EWS/ERG fusion with a truncated N-terminal domain of EWS in a Ewing's tumor. Int J Cancer. 1996 Jul 29;67(3):339–342. [Abstract] [Google Scholar]
  • Kaneko Y, Kobayashi H, Handa M, Satake N, Maseki N. EWS-ERG fusion transcript produced by chromosomal insertion in a Ewing sarcoma. Genes Chromosomes Cancer. 1997 Mar;18(3):228–231. [Abstract] [Google Scholar]
  • Selleri L, Giovannini M, Romo A, Zucman J, Delattre O, Thomas G, Evans GA. Cloning of the entire FLI1 gene, disrupted by the Ewing's sarcoma translocation breakpoint on 11q24, in a yeast artificial chromosome. Cytogenet Cell Genet. 1994;67(2):129–136. [Abstract] [Google Scholar]
  • Zucman-Rossi J, Legoix P, Thomas G. Identification of new members of the Gas2 and Ras families in the 22q12 chromosome region. Genomics. 1996 Dec 15;38(3):247–254. [Abstract] [Google Scholar]
  • Meyer D, Wolff CM, Stiegler P, Sénan F, Befort N, Befort JJ, Remy P. Xl-fli, the Xenopus homologue of the fli-1 gene, is expressed during embryogenesis in a restricted pattern evocative of neural crest cell distribution. Mech Dev. 1993 Dec;44(2-3):109–121. [Abstract] [Google Scholar]
  • Bailly RA, Bosselut R, Zucman J, Cormier F, Delattre O, Roussel M, Thomas G, Ghysdael J. DNA-binding and transcriptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma. Mol Cell Biol. 1994 May;14(5):3230–3241. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ohno T, Rao VN, Reddy ES. EWS/Fli-1 chimeric protein is a transcriptional activator. Cancer Res. 1993 Dec 15;53(24):5859–5863. [Abstract] [Google Scholar]
  • Prasad DD, Ouchida M, Lee L, Rao VN, Reddy ES. TLS/FUS fusion domain of TLS/FUS-erg chimeric protein resulting from the t(16;21) chromosomal translocation in human myeloid leukemia functions as a transcriptional activation domain. Oncogene. 1994 Dec;9(12):3717–3729. [Abstract] [Google Scholar]
  • Donaldson LW, Petersen JM, Graves BJ, McIntosh LP. Solution structure of the ETS domain from murine Ets-1: a winged helix-turn-helix DNA binding motif. EMBO J. 1996 Jan 2;15(1):125–134. [Europe PMC free article] [Abstract] [Google Scholar]
  • Liang H, Olejniczak ET, Mao X, Nettesheim DG, Yu L, Thompson CB, Fesik SW. The secondary structure of the ets domain of human Fli-1 resembles that of the helix-turn-helix DNA-binding motif of the Escherichia coli catabolite gene activator protein. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11655–11659. [Europe PMC free article] [Abstract] [Google Scholar]
  • Liang H, Mao X, Olejniczak ET, Nettesheim DG, Yu L, Meadows RP, Thompson CB, Fesik SW. Solution structure of the ets domain of Fli-1 when bound to DNA. Nat Struct Biol. 1994 Dec;1(12):871–875. [Abstract] [Google Scholar]
  • Jonsen MD, Petersen JM, Xu QP, Graves BJ. Characterization of the cooperative function of inhibitory sequences in Ets-1. Mol Cell Biol. 1996 May;16(5):2065–2073. [Europe PMC free article] [Abstract] [Google Scholar]
  • Petersen JM, Skalicky JJ, Donaldson LW, McIntosh LP, Alber T, Graves BJ. Modulation of transcription factor Ets-1 DNA binding: DNA-induced unfolding of an alpha helix. Science. 1995 Sep 29;269(5232):1866–1869. [Abstract] [Google Scholar]
  • Wasylyk B, Hahn SL, Giovane A. The Ets family of transcription factors. Eur J Biochem. 1993 Jan 15;211(1-2):7–18. [Abstract] [Google Scholar]
  • Werner MH, Clore M, Fisher CL, Fisher RJ, Trinh L, Shiloach J, Gronenborn AM. The solution structure of the human ETS1-DNA complex reveals a novel mode of binding and true side chain intercalation. Cell. 1995 Dec 1;83(5):761–771. [Abstract] [Google Scholar]
  • Macleod K, Leprince D, Stehelin D. The ets gene family. Trends Biochem Sci. 1992 Jul;17(7):251–256. [Abstract] [Google Scholar]
  • Fitzsimmons D, Hodsdon W, Wheat W, Maira SM, Wasylyk B, Hagman J. Pax-5 (BSAP) recruits Ets proto-oncogene family proteins to form functional ternary complexes on a B-cell-specific promoter. Genes Dev. 1996 Sep 1;10(17):2198–2211. [Abstract] [Google Scholar]
  • Jousset C, Carron C, Boureux A, Quang CT, Oury C, Dusanter-Fourt I, Charon M, Levin J, Bernard O, Ghysdael J. A domain of TEL conserved in a subset of ETS proteins defines a specific oligomerization interface essential to the mitogenic properties of the TEL-PDGFR beta oncoprotein. EMBO J. 1997 Jan 2;16(1):69–82. [Europe PMC free article] [Abstract] [Google Scholar]
  • Braun BS, Frieden R, Lessnick SL, May WA, Denny CT. Identification of target genes for the Ewing's sarcoma EWS/FLI fusion protein by representational difference analysis. Mol Cell Biol. 1995 Aug;15(8):4623–4630. [Europe PMC free article] [Abstract] [Google Scholar]
  • Thompson AD, Braun BS, Arvand A, Stewart SD, May WA, Chen E, Korenberg J, Denny C. EAT-2 is a novel SH2 domain containing protein that is up regulated by Ewing's sarcoma EWS/FLI1 fusion gene. Oncogene. 1996 Dec 19;13(12):2649–2658. [Abstract] [Google Scholar]
  • Kaya M, Yoshida K, Higashino F, Mitaka T, Ishii S, Fujinaga K. A single ets-related transcription factor, E1AF, confers invasive phenotype on human cancer cells. Oncogene. 1996 Jan 18;12(2):221–227. [Abstract] [Google Scholar]
  • Hida K, Shindoh M, Yasuda M, Hanzawa M, Funaoka K, Kohgo T, Amemiya A, Totsuka Y, Yoshida K, Fujinaga K. Antisense E1AF transfection restrains oral cancer invasion by reducing matrix metalloproteinase activities. Am J Pathol. 1997 Jun;150(6):2125–2132. [Europe PMC free article] [Abstract] [Google Scholar]
  • Wasylyk C, Gutman A, Nicholson R, Wasylyk B. The c-Ets oncoprotein activates the stromelysin promoter through the same elements as several non-nuclear oncoproteins. EMBO J. 1991 May;10(5):1127–1134. [Europe PMC free article] [Abstract] [Google Scholar]
  • Butticè G, Duterque-Coquillaud M, Basuyaux JP, Carrère S, Kurkinen M, Stéhelin D. Erg, an Ets-family member, differentially regulates human collagenase1 (MMP1) and stromelysin1 (MMP3) gene expression by physically interacting with the Fos/Jun complex. Oncogene. 1996 Dec 5;13(11):2297–2306. [Abstract] [Google Scholar]
  • Kovar H, Aryee DN, Jug G, Henöckl C, Schemper M, Delattre O, Thomas G, Gadner H. EWS/FLI-1 antagonists induce growth inhibition of Ewing tumor cells in vitro. Cell Growth Differ. 1996 Apr;7(4):429–437. [Abstract] [Google Scholar]
  • Pingoud V, Zinck R, Hipskind RA, Janknecht R, Nordheim A. Heterogeneity of ternary complex factors in HeLa cell nuclear extracts. J Biol Chem. 1994 Sep 16;269(37):23310–23317. [Abstract] [Google Scholar]
  • Magnaghi-Jaulin L, Masutani H, Robin P, Lipinski M, Harel-Bellan A. SRE elements are binding sites for the fusion protein EWS-FLI-1. Nucleic Acids Res. 1996 Mar 15;24(6):1052–1058. [Europe PMC free article] [Abstract] [Google Scholar]
  • Watson DK, Robinson L, Hodge DR, Kola I, Papas TS, Seth A. FLI1 and EWS-FLI1 function as ternary complex factors and ELK1 and SAP1a function as ternary and quaternary complex factors on the Egr1 promoter serum response elements. Oncogene. 1997 Jan 16;14(2):213–221. [Abstract] [Google Scholar]
  • Cavazzana AO, Miser JS, Jefferson J, Triche TJ. Experimental evidence for a neural origin of Ewing's sarcoma of bone. Am J Pathol. 1987 Jun;127(3):507–518. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ben-David Y, Giddens EB, Letwin K, Bernstein A. Erythroleukemia induction by Friend murine leukemia virus: insertional activation of a new member of the ets gene family, Fli-1, closely linked to c-ets-1. Genes Dev. 1991 Jun;5(6):908–918. [Abstract] [Google Scholar]
  • Howard JC, Yousefi S, Cheong G, Bernstein A, Ben-David Y. Temporal order and functional analysis of mutations within the Fli-1 and p53 genes during the erythroleukemias induced by F-MuLV. Oncogene. 1993 Oct;8(10):2721–2729. [Abstract] [Google Scholar]
  • Hart AH, Corrick CM, Tymms MJ, Hertzog PJ, Kola I. Human ERG is a proto-oncogene with mitogenic and transforming activity. Oncogene. 1995 Apr 6;10(7):1423–1430. [Abstract] [Google Scholar]
  • Lessnick SL, Braun BS, Denny CT, May WA. Multiple domains mediate transformation by the Ewing's sarcoma EWS/FLI-1 fusion gene. Oncogene. 1995 Feb 2;10(3):423–431. [Abstract] [Google Scholar]
  • May WA, Gishizky ML, Lessnick SL, Lunsford LB, Lewis BC, Delattre O, Zucman J, Thomas G, Denny CT. Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FLI1 for transformation. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5752–5756. [Europe PMC free article] [Abstract] [Google Scholar]
  • Toretsky JA, Connell Y, Neckers L, Bhat NK. Inhibition of EWS-FLI-1 fusion protein with antisense oligodeoxynucleotides. J Neurooncol. 1997 Jan;31(1-2):9–16. [Abstract] [Google Scholar]
  • Tanaka K, Iwakuma T, Harimaya K, Sato H, Iwamoto Y. EWS-Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing's sarcoma and primitive neuroectodermal tumor cells. J Clin Invest. 1997 Jan 15;99(2):239–247. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ouchida M, Ohno T, Fujimura Y, Rao VN, Reddy ES. Loss of tumorigenicity of Ewing's sarcoma cells expressing antisense RNA to EWS-fusion transcripts. Oncogene. 1995 Sep 21;11(6):1049–1054. [Abstract] [Google Scholar]
  • Toretsky JA, Kalebic T, Blakesley V, LeRoith D, Helman LJ. The insulin-like growth factor-I receptor is required for EWS/FLI-1 transformation of fibroblasts. J Biol Chem. 1997 Dec 5;272(49):30822–30827. [Abstract] [Google Scholar]
  • Hofbauer S, Hamilton G, Theyer G, Wollmann K, Gabor F. Insulin-like growth factor-I-dependent growth and in vitro chemosensitivity of Ewing's sarcoma and peripheral primitive neuroectodermal tumour cell lines. Eur J Cancer. 1993;29A(2):241–245. [Abstract] [Google Scholar]
  • van Valen F, Winkelmann W, Jürgens H. Type I and type II insulin-like growth factor receptors and their function in human Ewing's sarcoma cells. J Cancer Res Clin Oncol. 1992;118(4):269–275. [Abstract] [Google Scholar]
  • Yee D, Favoni RE, Lebovic GS, Lombana F, Powell DR, Reynolds CP, Rosen N. Insulin-like growth factor I expression by tumors of neuroectodermal origin with the t(11;22) chromosomal translocation. A potential autocrine growth factor. J Clin Invest. 1990 Dec;86(6):1806–1814. [Europe PMC free article] [Abstract] [Google Scholar]
  • Scotlandi K, Benini S, Sarti M, Serra M, Lollini PL, Maurici D, Picci P, Manara MC, Baldini N. Insulin-like growth factor I receptor-mediated circuit in Ewing's sarcoma/peripheral neuroectodermal tumor: a possible therapeutic target. Cancer Res. 1996 Oct 15;56(20):4570–4574. [Abstract] [Google Scholar]
  • Baserga R, Hongo A, Rubini M, Prisco M, Valentinis B. The IGF-I receptor in cell growth, transformation and apoptosis. Biochim Biophys Acta. 1997 Jun 7;1332(3):F105–F126. [Abstract] [Google Scholar]
  • Yi H, Fujimura Y, Ouchida M, Prasad DD, Rao VN, Reddy ES. Inhibition of apoptosis by normal and aberrant Fli-1 and erg proteins involved in human solid tumors and leukemias. Oncogene. 1997 Mar 20;14(11):1259–1268. [Abstract] [Google Scholar]
  • Mugneret F, Lizard S, Aurias A, Turc-Carel C. Chromosomes in Ewing's sarcoma. II. Nonrandom additional changes, trisomy 8 and der(16)t(1;16). Cancer Genet Cytogenet. 1988 Jun;32(2):239–245. [Abstract] [Google Scholar]
  • Armengol G, Tarkkanen M, Virolainen M, Forus A, Valle J, Böhling T, Asko-Seljavaara S, Blomqvist C, Elomaa I, Karaharju E, et al. Recurrent gains of 1q, 8 and 12 in the Ewing family of tumours by comparative genomic hybridization. Br J Cancer. 1997;75(10):1403–1409. [Europe PMC free article] [Abstract] [Google Scholar]
  • Jost CA, Marin MC, Kaelin WG., Jr p73 is a simian [correction of human] p53-related protein that can induce apoptosis. Nature. 1997 Sep 11;389(6647):191–194. [Abstract] [Google Scholar]
  • Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X, et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell. 1997 Aug 22;90(4):809–819. [Abstract] [Google Scholar]
  • Kovar H, Auinger A, Jug G, Aryee D, Zoubek A, Salzer-Kuntschik M, Gadner H. Narrow spectrum of infrequent p53 mutations and absence of MDM2 amplification in Ewing tumours. Oncogene. 1993 Oct;8(10):2683–2690. [Abstract] [Google Scholar]
  • Ladanyi M, Lewis R, Jhanwar SC, Gerald W, Huvos AG, Healey JH. MDM2 and CDK4 gene amplification in Ewing's sarcoma. J Pathol. 1995 Feb;175(2):211–217. [Abstract] [Google Scholar]
  • Aryee DN, Ströbel T, Kos K, Salzer-Kuntschik M, Zoubek A, Veron M, Ambros IM, Traincart F, Gadner H, Kovar H. High nm23-H1/NDPK-A expression in Ewing tumors: paradoxical immunohistochemical reactivity and lack of prognostic significance. Int J Cancer. 1995 Apr 21;64(2):104–111. [Abstract] [Google Scholar]
  • Kovar H, Jug G, Aryee DN, Zoubek A, Ambros P, Gruber B, Windhager R, Gadner H. Among genes involved in the RB dependent cell cycle regulatory cascade, the p16 tumor suppressor gene is frequently lost in the Ewing family of tumors. Oncogene. 1997 Oct;15(18):2225–2232. [Abstract] [Google Scholar]
  • MacLachlan TK, Sang N, Giordano A. Cyclins, cyclin-dependent kinases and cdk inhibitors: implications in cell cycle control and cancer. Crit Rev Eukaryot Gene Expr. 1995;5(2):127–156. [Abstract] [Google Scholar]
  • Hamelin R, Zucman J, Melot T, Delattre O, Thomas G. p53 mutations in human tumors with chimeric EWS/FLI-1 genes. Int J Cancer. 1994 May 1;57(3):336–340. [Abstract] [Google Scholar]
  • Prasad SC, Thraves PJ, Bhatia KG, Smulson ME, Dritschilo A. Enhanced poly(adenosine diphosphate ribose) polymerase activity and gene expression in Ewing's sarcoma cells. Cancer Res. 1990 Jan 1;50(1):38–43. [Abstract] [Google Scholar]
  • Peter M, Magdelenat H, Michon J, Melot T, Oberlin O, Zucker JM, Thomas G, Delattre O. Sensitive detection of occult Ewing's cells by the reverse transcriptase-polymerase chain reaction. Br J Cancer. 1995 Jul;72(1):96–100. [Europe PMC free article] [Abstract] [Google Scholar]
  • Pfleiderer C, Zoubek A, Gruber B, Kronberger M, Ambros PF, Lion T, Fink FM, Gadner H, Kovar H. Detection of tumour cells in peripheral blood and bone marrow from Ewing tumour patients by RT-PCR. Int J Cancer. 1995 Apr 21;64(2):135–139. [Abstract] [Google Scholar]
  • Zoubek A, Kovar H, Kronberger M, Amann G, Windhager R, Gruber B, Gadner H. Mobilization of tumour cells during biopsy in an infant with Ewing sarcoma. Eur J Pediatr. 1996 May;155(5):373–376. [Abstract] [Google Scholar]
  • Zoubek A, Ladenstein R, Windhager R, Amann G, Fischmeister G, Kager L, Jugovic D, Ambros PF, Gadner H, Kovar H. Predictive potential of testing for bone marrow involvement in Ewing tumor patients by RT-PCR: a preliminary evaluation. Int J Cancer. 1998 Feb 20;79(1):56–60. [Abstract] [Google Scholar]
  • Tanaka K, Iwakuma T, Harimaya K, Sato H, Iwamoto Y. EWS-Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing's sarcoma and primitive neuroectodermal tumor cells. J Clin Invest. 1997 Jan 15;99(2):239–247. [Europe PMC free article] [Abstract] [Google Scholar]
  • Mao X, Miesfeldt S, Yang H, Leiden JM, Thompson CB. The FLI-1 and chimeric EWS-FLI-1 oncoproteins display similar DNA binding specificities. J Biol Chem. 1994 Jul 8;269(27):18216–18222. [Abstract] [Google Scholar]
  • Zoubek A, Pfleiderer C, Ambros PF, Kronberger M, Dworzak MN, Gruber B, Luegmayer A, Windhager R, Fink FM, Urban C, et al. Minimal metastatische-und minimal residuelle Erkrankung bei Patienten mit Ewing-Tumoren. Klin Padiatr. 1995 Jul-Aug;207(4):242–247. [Abstract] [Google Scholar]
  • Bertolotti A, Melot T, Acker J, Vigneron M, Delattre O, Tora L. EWS, but not EWS-FLI-1, is associated with both TFIID and RNA polymerase II: interactions between two members of the TET family, EWS and hTAFII68, and subunits of TFIID and RNA polymerase II complexes. Mol Cell Biol. 1998 Mar;18(3):1489–1497. [Europe PMC free article] [Abstract] [Google Scholar]
  • Aryee DN, Petermann R, Kos K, Henn T, Haas OA, Kovar H. Cloning of a novel human ELF-1-related ETS transcription factor, ELFR, its characterization and chromosomal assignment relative to ELF-1. Gene. 1998 Mar 27;210(1):71–78. [Abstract] [Google Scholar]
  • de Alava E, Kawai A, Healey JH, Fligman I, Meyers PA, Huvos AG, Gerald WL, Jhanwar SC, Argani P, Antonescu CR, et al. EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewing's sarcoma. J Clin Oncol. 1998 Apr;16(4):1248–1255. [Abstract] [Google Scholar]

Articles from Sarcoma are provided here courtesy of Wiley

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Article citations


Go to all (23) article citations