Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


From a variety of analytical electron microscopy experiments, the chromosomes of dinoflagellates are known to contain sizeable amounts of cations, the latter thought to contribute to the neutralization of the negative charge carried by the phosphate groups in the DNA backbone. From previous Ca and Mg chelation experiments, it is also known that these cations are necessary for the compaction and preservation of the chromosome architecture. Similar conclusions have been recently presented by our group concerning mammalian mitotic chromosomes, in studies based on secondary ion mass spectrometry (SIMS) carried out with the University of Chicago high-resolution scanning ion microprobe (UC-SIM). We have now applied this instrument to image the distribution of DNA-bound Ca(2+) and Mg(2+) in dinoflagellate chromosomes, a goal that could not be attained earlier by analytical electron microscopy. Analyzed quantitatively and imaged here by SIMS for the first time, through their cation content, are the chromosomes of the dinoflagellates Prorocentrum micans, Gymnodinium mikimotoi and Gymnodinium dorsum. The cell nuclei were isolated and prepared for SIMS analysis with a minimal protocol (mechanical fractionation in culture medium followed by ethanol drying), which did not expose the samples to artifact-creating, alien chemical agents. By this approach, we have confirmed the earlier findings by several authors, and contributed new structural information provided by our ion probe capability to erode the sample surface layer by layer (SIMS tomography). Dinoflagellates, due to the absence of histones, represent an ideal model system where cations may bind directly with DNA, allowing comparisons to be made with recently reported X-ray crystallography results at atomic resolution. Such comparisons yielded quantitative confirmation that the Ca(2+)+Mg(2+) concentrations found for e.g. P. micans are consistent with those anticipated to provide complete charge neutralization of naked DNA by cations, also resulting in maximal DNA compaction.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1016/j.ejcb.2008.06.002

Supporting
Mentioning
Contrasting
0
37
0

Article citations


Go to all (23) article citations