Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Type 2 diabetes is characterised by elevated blood glucose concentrations, which potentially could be normalised by stimulation of hepatic glycogen synthesis. Under glycogenolytic conditions, the interaction of hepatic glycogen-associated protein phosphatase-1 (PP1-G(L)) with glycogen phosphorylase a is believed to inhibit the dephosphorylation and activation of glycogen synthase (GS) by the PP1-G(L) complex, suppressing glycogen synthesis. Consequently, the interaction of G(L) with phosphorylase a has emerged as an attractive anti-diabetic target, pharmacological disruption of which could provide a novel mechanism to lower blood glucose levels by increasing hepatic glycogen synthesis. Here we report for the first time the in vivo consequences of disrupting the G(L)-phosphorylase a interaction, using a mouse model containing a Tyr284Phe substitution in the phosphorylase a-binding region of the G(L) protein. The resulting G(L)(Y284F/Y284F) mice display hepatic PP1-G(L) activity that is no longer sensitive to allosteric inhibition by phosphorylase a, resulting in increased GS activity under glycogenolytic conditions, demonstrating that regulation of G(L) by phosphorylase a operates in vivo. G(L)(Y284F/Y284F) and G(L)(Y284F/+) mice display improved glucose tolerance compared with G(L)(+/+) littermates, without significant accumulation of hepatic glycogen. The data provide the first in vivo evidence in support of targeting the G(L)-phosphorylase a interaction for treatment of hyperglycaemia. During prolonged fasting the G(L)(Y284F/Y284F) mice lose more body weight and display decreased blood glucose levels in comparison with their G(L)(+/+) littermates. These results suggest that, during periods of food deprivation, the phosphorylase a regulation of G(L) may prevent futile glucose-glycogen cycling, preserving energy and thus providing a selective biological advantage that may explain the observed conservation of the allosteric regulation of PP1-G(L) by phosphorylase a in mammals.

References 


Articles referenced by this article (49)


Show 10 more references (10 of 49)

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Article citations


Go to all (24) article citations

Data 


Funding 


Funders who supported this work.

Medical Research Council (1)