Abstract
Free full text
Structure and function of WD40 domain proteins
Abstract
The WD40 domain exhibits a β-propeller architecture, often comprising seven blades. The WD40 domain is one of the most abundant domains and also among the top interacting domains in eukaryotic genomes. In this review, we will discuss the identification, definition and architecture of the WD40 domains. WD40 domain proteins are involved in a large variety of cellular processes, in which WD40 domains function as a protein-protein or protein-DNA interaction platform. WD40 domain mediates molecular recognition events mainly through the smaller top surface, but also through the bottom surface and sides. So far, no WD40 domain has been found to display enzymatic activity. We will also discuss the different binding modes exhibited by the large versatile family of WD40 domain proteins. In the last part of this review, we will discuss how post-translational modifications are recognized by WD40 domain proteins.
References
- Adams-Cioaba M.A., Guo Y., Bian C., Amaya M.F., Lam R., Wasney G.A., Vedadi M., Xu C., Min J. Structural studies of the tandem Tudor domains of fragile X mental retardation related proteins FXR1 and FXR2. PLoS One. 2010;5:e13559. 10.1371/journal.pone.0013559. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Adams-Cioaba M.A., Min J. Structure and function of histone methylation binding proteins. Biochemistry and cell biology = Biochimie et biologie cellulaire. 2009;87:93–105. 10.1139/O08-129. [Abstract] [CrossRef] [Google Scholar]
- Andrade M.A., Perez-Iratxeta C., Ponting C.P. Protein repeats: structures, functions, and evolution. J Struct Biol. 2001;134:117–131. 10.1006/jsbi.2001.4392. [Abstract] [CrossRef] [Google Scholar]
- Ang X.L., Wade Harper J. SCF-mediated protein degradation and cell cycle control. Oncogene. 2005;24:2860–2870. 10.1038/sj.onc.1208614. [Abstract] [CrossRef] [Google Scholar]
- Angers S., Li T., Yi X., MacCoss M.J., Moon R.T., Zheng N. Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature. 2006;443:590–593. [Abstract] [Google Scholar]
- Bergametti F., Bianchi J., Transy C. Interaction of hepatitis B virus X protein with damaged DNA-binding protein p127: structural analysis and identification of antagonists. J Biomed Sci. 2002;9:706–715. 10.1007/BF02254999. [Abstract] [CrossRef] [Google Scholar]
- Brohawn S.G., Partridge J.R., Whittle J.R., Schwartz T.U. The nuclear pore complex has entered the atomic age. Structure. 2009;17:1156–1168. 10.1016/j.str.2009.07.014. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Cao R., Wang L., Wang H., Xia L., Erdjument-Bromage H., Tempst P., Jones R.S., Zhang Y. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298:1039–1043. 10.1126/science.1076997. [Abstract] [CrossRef] [Google Scholar]
- Cao R., Zhang Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev. 2004;14:155–164. 10.1016/j.gde.2004.02.001. [Abstract] [CrossRef] [Google Scholar]
- Cardozo T., Pagano M. The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol. 2004;5:739–751. 10.1038/nrm1471. [Abstract] [CrossRef] [Google Scholar]
- Chan D.W., Wang Y., Wu M., Wong J., Qin J., Zhao Y. Unbiased proteomic screen for binding proteins to modified lysines on histone H3. Proteomics. 2009;9:2343–2354. 10.1002/pmic.200800600. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Chen X., Zhang Y., Douglas L., Zhou P. UV-damaged DNA-binding proteins are targets of CUL-4A-mediated ubiquitination and degradation. J Biol Chem. 2001;276:48175–48182. [Abstract] [Google Scholar]
- Couture J.F., Collazo E., Trievel R.C. Molecular recognition of histone H3 by the WD40 protein WDR5. Nat Struct Mol Biol. 2006;13:698–703. 10.1038/nsmb1116. [Abstract] [CrossRef] [Google Scholar]
- Czermin B., Melfi R., McCabe D., Seitz V., Imhof A., Pirrotta V. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell. 2002;111:185–196. 10.1016/S0092-8674(02)00975-3. [Abstract] [CrossRef] [Google Scholar]
- English C.M., Adkins M.W., Carson J.J., Churchill M.E., Tyler J.K. Structural basis for the histone chaperone activity of Asf1. Cell. 2006;127:495–508. 10.1016/j.cell.2006.08.047. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Eryilmaz J., Pan P., Amaya M.F., Allali-Hassani A., Dong A., Adams-Cioaba M.A., Mackenzie F., Vedadi M., Min J. Structural studies of a four-MBT repeat protein MBTD1. PLoS One. 2009;4:e7274. 10.1371/journal.pone.0007274. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Feng Q., Zhang Y. The NuRD complex: linking histone modification to nucleosome remodeling. Curr Top Microbiol Immunol. 2003;274:269–290. [Abstract] [Google Scholar]
- Fong H.K., Hurley J.B., Hopkins R.S., Miake-Lye R., Johnson M. S., Doolittle R.F., Simon M.I. Repetitive segmental structure of the transducin beta subunit: homology with the CDC4 gene and identification of related mRNAs. Proc Natl Acad Sci U S A. 1986;83:2162–2166. 10.1073/pnas.83.7.2162. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Gao Z., Huang Z., Olivey H.E., Gurbuxani S., Crispino J.D., Svensson E.C. FOG-1-mediated recruitment of NuRD is required for cell lineage re-enforcement during haematopoiesis. EMBO J. 2010;29:457–468. 10.1038/emboj.2009.368. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Gaudet R., Bohm A., Sigler P.B. Crystal structure at 2.4 angstroms resolution of the complex of transducin betagamma and its regulator, phosducin. Cell. 1996;87:577–588. 10.1016/S0092-8674(00)81376-8. [Abstract] [CrossRef] [Google Scholar]
- Groisman R., Polanowska J., Kuraoka I., Sawada J., Saijo M., Drapkin R., Kisselev A.F., Tanaka K., Nakatani Y. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell. 2003;113:357–367. 10.1016/S0092-8674(03)00316-7. [Abstract] [CrossRef] [Google Scholar]
- Guerrero-Santoro J., Kapetanaki M.G., Hsieh C.L., Gorbachinsky I., Levine A.S., Rapić-Otrin V. The cullin 4B-based UV-damaged DNA-binding protein ligase binds to UV-damaged chromatin and ubiquitinates histone H2A. Cancer Res. 2008;68:5014–5022. 10.1158/0008-5472.CAN-07-6162. [Abstract] [CrossRef] [Google Scholar]
- Guo Y., Nady N., Qi C., Allali-Hassani A., Zhu H., Pan P., Adams-Cioaba M.A., Amaya M.F., Dong A., Vedadi M., et al. Methylation-state-specific recognition of histones by the MBT repeat protein L3MBTL2. Nucleic Acids Res. 2009;37:2204–2210. 10.1093/nar/gkp086. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Han Z., Guo L., Wang H., Shen Y., Deng X.W., Chai J. Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5. Mol Cell. 2006;22:137–144. 10.1016/j.molcel.2006.03.018. [Abstract] [CrossRef] [Google Scholar]
- Hansen K.H., Bracken A.P., Pasini D., Dietrich N., Gehani S.S., Monrad A., Rappsilber J., Lerdrup M., Helin K. A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol. 2008;10:1291–1300. 10.1038/ncb1787. [Abstract] [CrossRef] [Google Scholar]
- Hao B., Oehlmann S., Sowa M.E., Harper J.W., Pavletich N.P. Structure of a Fbw7-Skp1-cyclin E complex: multisitephosphorylated substrate recognition by SCF ubiquitin ligases. Mol Cell. 2007;26:131–143. 10.1016/j.molcel.2007.02.022. [Abstract] [CrossRef] [Google Scholar]
- Hardwick K.G., Johnston R.C., Smith D.L., Murray A.W. MAD3 encodes a novel component of the spindle checkpoint which interacts with Bub3p, Cdc20p, and Mad2p. J Cell Biol. 2000;148:871–882. 10.1083/jcb.148.5.871. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Hattendorf D.A., Andreeva A., Gangar A., Brennwald P.J., Weis W.I. Structure of the yeast polarity protein Sro7 reveals a SNARE regulatory mechanism. Nature. 2007;446:567–571. 10.1038/nature05635. [Abstract] [CrossRef] [Google Scholar]
- He Y.J., McCall C.M., Hu J., Zeng Y., Xiong Y. DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev. 2006;20:2949–2954. 10.1101/gad.1483206. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Higa L.A., Wu M., Ye T., Kobayashi R., Sun H., Zhang H. CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol. 2006;8:1277–1283. 10.1038/ncb1490. [Abstract] [CrossRef] [Google Scholar]
- Hu J., McCall C.M., Ohta T., Xiong Y. Targeted ubiquitination of CDT1 by the DDB1-CUL4A-ROC1 ligase in response to DNA damage. Nat Cell Biol. 2004;6:1003–1009. 10.1038/ncb1172. [Abstract] [CrossRef] [Google Scholar]
- Jennings B.H., Pickles L.M., Wainwright S.M., Roe S.M., Pearl L. H., Ish-Horowicz D. Molecular recognition of transcriptional repressor motifs by the WD domain of the Groucho/TLE corepressor. Mol Cell. 2006;22:645–655. 10.1016/j.molcel.2006.04.024. [Abstract] [CrossRef] [Google Scholar]
- Jin J., Cardozo T., Lovering R.C., Elledge S.J., Pagano M., Harper J.W. Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev. 2004;18:2573–2580. 10.1101/gad.1255304. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Johnston C.A., Kimple A.J., Giguère P.M., Siderovski D.P. Structure of the parathyroid hormone receptor C terminus bound to the G-protein dimer Gbeta1gamma2. Structure. 2008;16:1086–1094. 10.1016/j.str.2008.04.010. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar] Retracted
- Kirchhausen T., Harrison S.C. Protein organization in clathrin trimers. Cell. 1981;23:755–761. 10.1016/0092-8674(81)90439-6. [Abstract] [CrossRef] [Google Scholar]
- Lambright D.G., Sondek J., Bohm A., Skiba N.P., Hamm H.E., Sigler P.B. The 2.0 A crystal structure of a heterotrimeric G protein. Nature. 1996;379:311–319. 10.1038/379311a0. [Abstract] [CrossRef] [Google Scholar]
- Larsen N.A., Al-Bassam J., Wei R.R., Harrison S.C. Structural analysis of Bub3 interactions in the mitotic spindle checkpoint. Proc Natl Acad Sci U S A. 2007;104:1201–1206. 10.1073/pnas.0610358104. [Abstract] [CrossRef] [Google Scholar]
- Lejon S., Thong S.Y., Murthy A., AlQarni S., Murzina N.V., Blobel G.A., Laue E.D., Mackay J.P. Insights into association of the NuRD complex with FOG-1 from the crystal structure of an RbAp48·FOG-1 complex. J Biol Chem. 2011;286:1196–1203. 10.1074/jbc.M110.195842. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Lens S.M., Wolthuis R.M., Klompmaker R., Kauw J., Agami R., Brummelkamp T., Kops G., Medema R.H. Survivin is required for a sustained spindle checkpoint arrest in response to lack of tension. EMBO J. 2003;22:2934–2947. 10.1093/emboj/cdg307. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Letunic I., Doerks T., Bork P. SMART 6: recent updates and new developments. Nucleic Acids Res. 2009;37:D229–D232. 10.1093/nar/gkn808. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Li D., Roberts R. WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci. 2001;58:2085–2097. 10.1007/PL00000838. [Abstract] [CrossRef] [Google Scholar]
- Li T., Chen X., Garbutt K.C., Zhou P., Zheng N. Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell. 2006;124:105–117. 10.1016/j.cell.2005.10.033. [Abstract] [CrossRef] [Google Scholar]
- Li T., Robert E.I., van Breugel P.C., Strubin M., Zheng N. A promiscuous α-helical motif anchors viral hijackers and substrate receptors to the CUL4-DDB1 ubiquitin ligase machinery. Nat Struct Mol Biol. 2010;17:105–111. 10.1038/nsmb.1719. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Liu H., Wang J.Y., Huang Y., Li Z., Gong W., Lehmann R., Xu R.M. Structural basis for methylarginine-dependent recognition of Aubergine by Tudor. Genes & Dev. 2010;24:1876–1881. 10.1101/gad.1956010. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Liu K., Chen C., Guo Y., Lam R., Bian C., Xu C., Zhao D.Y., Jin J., MacKenzie F., Pawson T., et al. Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain. Proc Natl Acad Sci U S A. 2010;107:18398–18403. 10.1073/pnas.1013106107. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Margueron R., Justin N., Ohno K., Sharpe M.L., Son J., Drury W.J., 3rd, Voigt P., Martin S.R., Taylor W.R., De Marco V., et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature. 2009;461:762–767. 10.1038/nature08398. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Michel J.J., Xiong Y. Human CUL-1, but not other cullin family members, selectively interacts with SKP1 to form a complex with SKP2 and cyclin A. Cell Growth Differ. 1998;9:435–449. [Abstract] [Google Scholar]
- Min J., Allali-Hassani A., Nady N., Qi C., Ouyang H., Liu Y., MacKenzie F., Vedadi M., Arrowsmith C.H. L3MBTL1 recognition of mono- and dimethylated histones. Nat Struct Mol Biol. 2007;14:1229–1230. 10.1038/nsmb1340. [Abstract] [CrossRef] [Google Scholar]
- Min J., Zhang Y., Xu R.M. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev. 2003;17:1823–1828. 10.1101/gad.269603. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Mohri K., Vorobiev S., Fedorov A.A., Almo S.C., Ono S. Identification of functional residues on Caenorhabditis elegans actin-interacting protein 1 (UNC-78) for disassembly of actin depolymerizing factor/cofilin-bound actin filaments. J Biol Chem. 2004;279:31697–31707. 10.1074/jbc.M403351200. [Abstract] [CrossRef] [Google Scholar]
- Müller J., Hart C.M., Francis N.J., Vargas M.L., Sengupta A., Wild B., Miller E.L., O’Connor M.B., Kingston R.E., Simon J.A. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell. 2002;111:197–208. 10.1016/S0092-8674(02)00976-5. [Abstract] [CrossRef] [Google Scholar]
- Murzin A.G. Structural principles for the propeller assembly of beta-sheets: the preference for seven-fold symmetry. Proteins. 1992;14:191–201. 10.1002/prot.340140206. [Abstract] [CrossRef] [Google Scholar]
- Murzina N.V., Pei X.Y., Zhang W., Sparkes M., Vicente-Garcia J., Pratap J.V., McLaughlin S.H., Ben-Shahar T.R., Verreault A., Luisi B.F., et al. Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46. Structure. 2008;16:1077–1085. 10.1016/j.str.2008.05.006. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Nash P., Tang X., Orlicky S., Chen Q., Gertler F.B., Mendenhall M. D., Sicheri F., Pawson T., Tyers M. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature. 2001;414:514–521. 10.1038/35107009. [Abstract] [CrossRef] [Google Scholar]
- Neer E.J., Schmidt C.J., Nambudripad R., Smith T.F. The ancient regulatory-protein family of WD-repeat proteins. Nature. 1994;371:297–300. 10.1038/371297a0. [Abstract] [CrossRef] [Google Scholar]
- Oliver A.W., Swift S., Lord C.J., Ashworth A., Pearl L.H. Structural basis for recruitment of BRCA2 by PALB2. EMBO Rep. 2009;10:990–996. 10.1038/embor.2009.126. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Orlicky S., Tang X., Willems A., Tyers M., Sicheri F. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell. 2003;112:243–256. 10.1016/S0092-8674(03)00034-5. [Abstract] [CrossRef] [Google Scholar]
- Paoli M. Protein folds propelled by diversity. Prog Biophys Mol Biol. 2001;76:103–130. 10.1016/S0079-6107(01)00007-4. [Abstract] [CrossRef] [Google Scholar]
- Patel A., Dharmarajan V., Cosgrove M.S. Structure of WDR5 bound to mixed lineage leukemia protein-1 peptide. J Biol Chem. 2008;283:32158–32161. 10.1074/jbc.C800164200. [Abstract] [CrossRef] [Google Scholar]
- Ruthenburg A.J., Wang W., Graybosch D.M., Li H., Allis C.D., Patel D.J., Verdine G.L. Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex. Nat Struct Mol Biol. 2006;13:704–712. 10.1038/nsmb1119. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Schuetz A., Allali-Hassani A., Martín F., Loppnau P., Vedadi M., Bochkarev A., Plotnikov A.N., Arrowsmith C.H., Min J. Structural basis for molecular recognition and presentation of histone H3 by WDR5. EMBO J. 2006;25:4245–4252. 10.1038/sj.emboj.7601316. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Schuster-Böckler B., Schultz J., Rahmann S. HMM Logos for visualization of protein families. BMC Bioinformatics. 2004;5:7. 10.1186/1471-2105-5-7. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Shaw N., Zhao M., Cheng C., Xu H., Saarikettu J., Li Y., Da Y., Yao Z., Silvennoinen O., Yang J., et al. The multifunctional human p100 protein ‘hooks’ methylated ligands. Nat Struct Mol Biol. 2007;14:779–784. 10.1038/nsmb1269. [Abstract] [CrossRef] [Google Scholar]
- Smith T.F., Gaitatzes C., Saxena K., Neer E.J. The WD repeat: a common architecture for diverse functions. Trends Biochem Sci. 1999;24:181–185. 10.1016/S0968-0004(99)01384-5. [Abstract] [CrossRef] [Google Scholar]
- Song J.J., Garlick J.D., Kingston R.E. Structural basis of histone H4 recognition by p55. Genes Dev. 2008;22:1313–1318. 10.1101/gad.1653308. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Song J.J., Kingston R.E. WDR5 interacts with mixed lineage leukemia (MLL) protein via the histone H3-binding pocket. J Biol Chem. 2008;283:35258–35264. 10.1074/jbc.M806900200. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Stirnimann C.U., Petsalaki E., Russell R.B., Müller C.W. WD40 proteins propel cellular networks. Trends Biochem Sci. 2010;35:565–574. 10.1016/j.tibs.2010.04.003. [Abstract] [CrossRef] [Google Scholar]
- Sy S.M., Huen M.S., Chen J. PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc Natl Acad Sci U S A. 2009;106:7155–7160. 10.1073/pnas.0811159106. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- ter Haar E., Harrison S.C., Kirchhausen T. Peptide-ingroove interactions link target proteins to the beta-propeller of clathrin. Proc Natl Acad Sci U S A. 2000;97:1096–1100. 10.1073/pnas.97.3.1096. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Ungewickell E., Branton D. Assembly units of clathrin coats. Nature. 1981;289:420–422. 10.1038/289420a0. [Abstract] [CrossRef] [Google Scholar]
- Verreault A., Kaufman P.D., Kobayashi R., Stillman B. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell. 1996;87:95–104. 10.1016/S0092-8674(00)81326-4. [Abstract] [CrossRef] [Google Scholar]
- Verreault A., Kaufman P.D., Kobayashi R., Stillman B. Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr Biol. 1998;8:96–108. 10.1016/S0960-9822(98)70040-5. [Abstract] [CrossRef] [Google Scholar]
- Voegtli W.C., Madrona A.Y., Wilson D.K. The structure of Aip1p, aWD repeat protein that regulates Cofilin-mediated actin depolymerization. J Biol Chem. 2003;278:34373–34379. 10.1074/jbc.M302773200. [Abstract] [CrossRef] [Google Scholar]
- Wall M.A., Coleman D.E., Lee E., Iñiguez-Lluhi J.A., Posner B.A., Gilman A.G., Sprang S.R. The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell. 1995;83:1047–1058. 10.1016/0092-8674(95)90220-1. [Abstract] [CrossRef] [Google Scholar]
- Wang H., Zhai L., Xu J., Joo H.Y., Jackson S., Erdjument-Bromage H., Tempst P., Xiong Y., Zhang Y. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell. 2006;22:383–394. 10.1016/j.molcel.2006.03.035. [Abstract] [CrossRef] [Google Scholar]
- Wang L., Brown J.L., Cao R., Zhang Y., Kassis J.A., Jones R. S. Hierarchical recruitment of polycomb group silencing complexes. Mol Cell. 2004;14:637–646. 10.1016/j.molcel.2004.05.009. [Abstract] [CrossRef] [Google Scholar]
- Whittle J.R., Schwartz T.U. Structure of the Sec13–Sec16 edge element, a template for assembly of the COPII vesicle coat. J Cell Biol. 2010;190:347–361. 10.1083/jcb.201003092. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Wittschieben B.O., Iwai S., Wood R.D. DDB1–DDB2 (xeroderma pigmentosum group E) protein complex recognizes a cyclobutane pyrimidine dimer, mismatches, apurinic/apyrimidinic sites, and compound lesions in DNA. J Biol Chem. 2005;280:39982–39989. 10.1074/jbc.M507854200. [Abstract] [CrossRef] [Google Scholar]
- Wu G., Xu G., Schulman B.A., Jeffrey P.D., Harper J.W., Pavletich N.P. Structure of a beta-TrCP1-Skp1-betacatenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Mol Cell. 2003;11:1445–1456. 10.1016/S1097-2765(03)00234-X. [Abstract] [CrossRef] [Google Scholar]
- Wu X.H., Chen R.C., Gao Y., Wu Y.D. The effect of Asp-His-Ser/Thr-Trp tetrad on the thermostability of WD40-repeat proteins. Biochemistry. 2010;49:10237–10245. 10.1021/bi101321y. [Abstract] [CrossRef] [Google Scholar]
- Wysocka J., Swigut T., Milne T.A., Dou Y., Zhang X., Burlingame A.L., Roeder R.G., Brivanlou A.H., Allis C.D. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell. 2005;121:859–872. 10.1016/j.cell.2005.03.036. [Abstract] [CrossRef] [Google Scholar]
- Xu C., Bian C., Yang W., Galka M., Ouyang H., Chen C., Qiu W., Liu H., Jones A.E., MacKenzie F., et al. Binding of different histone marks differentially regulates the activity and specificity of polycomb repressive complex 2 (PRC2) Proc Natl Acad Sci U S A. 2010;107:19266–19271. 10.1073/pnas.1008937107. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
Articles from Protein & Cell are provided here courtesy of Oxford University Press
Full text links
Read article at publisher's site: https://doi.org/10.1007/s13238-011-1018-1
Read article for free, from open access legal sources, via Unpaywall: https://link.springer.com/content/pdf/10.1007%2Fs13238-011-1018-1.pdf
Citations & impact
Impact metrics
Citations of article over time
Alternative metrics
Article citations
Transcriptomic analyses in the gametophytes of the apomictic fern Dryopteris affinis.
Planta, 260(5):111, 02 Oct 2024
Cited by: 1 article | PMID: 39356333 | PMCID: PMC11447071
Genome-wide identification of CaWD40 proteins reveals the involvement of a novel complex (CaAN1-CaDYT1-CaWD40-91) in anthocyanin biosynthesis and genic male sterility in Capsicum annuum.
BMC Genomics, 25(1):851, 11 Sep 2024
Cited by: 0 articles | PMID: 39261781 | PMCID: PMC11389352
Functional profiling of serine, threonine and tyrosine sites.
Nat Chem Biol, 23 Sep 2024
Cited by: 0 articles | PMID: 39313591
WDR64, a testis-specific protein, is involved in the manchette and flagellum formation by interacting with ODF1.
Heliyon, 10(19):e38263, 21 Sep 2024
Cited by: 0 articles | PMID: 39386799 | PMCID: PMC11462348
Knockout of the WD40 domain of ATG16L1 enhances foot and mouth disease virus replication.
BMC Genomics, 25(1):796, 23 Aug 2024
Cited by: 0 articles | PMID: 39179961 | PMCID: PMC11342673
Go to all (343) article citations
Data
Similar Articles
To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.
WD40 proteins propel cellular networks.
Trends Biochem Sci, 35(10):565-574, 05 May 2010
Cited by: 359 articles | PMID: 20451393
Review
WD40 repeat propellers define a ubiquitin-binding domain that regulates turnover of F box proteins.
Mol Cell, 40(3):433-443, 01 Nov 2010
Cited by: 85 articles | PMID: 21070969 | PMCID: PMC3266742
WD40 Repeat Proteins: Signalling Scaffold with Diverse Functions.
Protein J, 37(5):391-406, 01 Oct 2018
Cited by: 128 articles | PMID: 30069656
Review
Binding of pleckstrin homology domains to WD40/beta-transducin repeat containing segments of the protein product of the Lis-1 gene.
Biochem Biophys Res Commun, 209(2):622-629, 01 Apr 1995
Cited by: 31 articles | PMID: 7733932
Funding
Funders who supported this work.