Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Many areas of chloroplast research require methods that can assess the quality and quantity of chloroplast DNA (cpDNA). The study of chloroplast functions that depend on the proper maintenance and expression of the chloroplast genome, understanding cpDNA replication and repair, and the development of technologies for chloroplast transformation are just some of the disciplines that require the isolation of high-quality cpDNA. Arabidopsis thaliana offers several advantages for studying these processes because of the sizeable collection of mutants and natural varieties (accessions) available from stock centers and a broad community of researchers that has developed many other genetic resources. Several approaches for the isolation and quantification of cpDNA have been developed, but little consideration has been given to the strengths and weaknesses and the type of information obtained by each method, especially with respect to A. thaliana. Here, we provide protocols for obtaining high-quality cpDNA for PCR and other applications, and we evaluate several different isolation and analytical methods in order to build a robust framework for the study of cpDNA with this model organism.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1007/978-1-61779-234-2_10

Supporting
Mentioning
Contrasting
0
4
0

Article citations


Go to all (6) article citations