Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Gene-gene interaction plays an important role in the etiology of complex diseases, which may exist without a genetic main effect. Most current statistical approaches, however, focus on assessing an interaction effect in the presence of the gene's main effects. It would be very helpful to develop methods that can detect not only the gene's main effects but also gene-gene interaction effects regardless of the existence of the gene's main effects while adjusting for confounding factors. In addition, when a disease variant is rare or when the sample size is quite limited, the statistical asymptotic properties are not applicable; therefore, approaches based on a reasonable and applicable computational framework would be practical and frequently applied. In this study, we have developed an extended support vector machine (SVM) method and an SVM-based pedigree-based generalized multifactor dimensionality reduction (PGMDR) method to study interactions in the presence or absence of main effects of genes with an adjustment for covariates using limited samples of families. A new test statistic is proposed for classifying the affected and the unaffected in the SVM-based PGMDR approach to improve performance in detecting gene-gene interactions. Simulation studies under various scenarios have been performed to compare the performances of the proposed and the original methods. The proposed and original approaches have been applied to a real data example for illustration and comparison. Both the simulation and real data studies show that the proposed SVM and SVM-based PGMDR methods have great prediction accuracies, consistencies, and power in detecting gene-gene interactions.

References 


Articles referenced by this article (31)


Show 10 more references (10 of 31)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1002/gepi.21602

Supporting
Mentioning
Contrasting
0
12
0

Article citations


Go to all (12) article citations

Funding 


Funders who supported this work.

NIAAA NIH HHS (1)

National Health Research Institutes (1)

National Science Council in Taiwan (1)