Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Nosiheptide, a member of the e series of macrocyclic thiopeptide natural products, contains a side-ring system composed of a 3,4-dimethylindolic acid (DMIA) moiety connected to Glu6 and Cys8 of the thiopeptide backbone via ester and thioester linkages, respectively. Herein, we show that NosN, a predicted class C radical S-adenosylmethionine (SAM) methylase, catalyzes both the transfer of a C1 unit from SAM to 3-methylindolic acid linked to Cys8 of a synthetic substrate surrogate as well as the formation of the ester linkage between Glu6 and the nascent C4 methylene moiety of DMIA. In contrast to previous studies that indicated that 5'-methylthioadenosine is the immediate methyl donor in the reaction, in our studies, SAM itself plays this role, giving rise to S-adenosylhomocysteine as a coproduct of the reaction.

Free full text 


loading

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1021/jacs.7b08492

Supporting
Mentioning
Contrasting
4
72
0

Article citations


Go to all (24) article citations

Data 


Data behind the article

This data has been text mined from the article, or deposited into data resources.

Funding 


Funders who supported this work.

NIAID NIH HHS (2)

NIGMS NIH HHS (1)

National Institute of Allergy and Infectious Diseases (2)

National Institute of General Medical Sciences (1)