Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


This chapter focuses on protein sorting in the secretory pathway. From primary and secondary biosynthetic sites in the cytosol and mitochondrial matrix, respectively, proteins and lipids are distributed to more than 30 final destinations in membranes or membrane-bound spaces, where they carry out their programmed function. Molecular sorting is defined, in its most general sense, as the sum of the mechanisms that determine the distribution of a given molecule from its site of synthesis to its site of function in the cell. The final site of residence of a protein in a eukaryotic cell is determined by a combination of various factors, acting in concert: (1) site of synthesis, (2) sorting signals or zip codes, (3) signal recognition or decoding mechanisms, (4) cotranslational or posttranslational mechanisms for translocation across membranes, (5) specific fusion-fission interactions between intracellular vesicular compartments, and (6) restrictions to the lateral mobility in the plane of the bilayer. Improvements in cell fractionation, protein separation, and immune precipitation procedures in the past decade have made them possible. Very little is known about the mechanisms that mediate the localization and concentration of specific proteins and lipids within organelles. Various experimental model systems have become available for their study. The advent of recombinant DNA technology has shortened the time needed for obtaining the primary structure of proteins to a few months.

Free full text 


Logo of pheelsevierLink to Publisher's site
Curr Top Membr Transp. 1985; 24: 251–294.
Published online 2008 May 30. https://doi.org/10.1016/S0070-2161(08)60328-7
PMCID: PMC7146842
PMID: 32287478

Chapter 6 Protein Sorting in the Secretory Pathway

Publisher Summary

This chapter focuses on protein sorting in the secretory pathway. From primary and secondary biosynthetic sites in the cytosol and mitochondrial matrix, respectively, proteins and lipids are distributed to more than 30 final destinations in membranes or membrane-bound spaces, where they carry out their programmed function. Molecular sorting is defined, in its most general sense, as the sum of the mechanisms that determine the distribution of a given molecule from its site of synthesis to its site of function in the cell. The final site of residence of a protein in a eukaryotic cell is determined by a combination of various factors, acting in concert: (1) site of synthesis, (2) sorting signals or zip codes, (3) signal recognition or decoding mechanisms, (4) cotranslational or posttranslational mechanisms for translocation across membranes, (5) specific fusion–fission interactions between intracellular vesicular compartments, and (6) restrictions to the lateral mobility in the plane of the bilayer. Improvements in cell fractionation, protein separation, and immune precipitation procedures in the past decade have made them possible. Very little is known about the mechanisms that mediate the localization and concentration of specific proteins and lipids within organelles. Various experimental model systems have become available for their study. The advent of recombinant DNA technology has shortened the time needed for obtaining the primary structure of proteins to a few months.

References

  • Abrahamson D.R., Rodewald R. Evidence of the sorting of endocytic vesicle contents during the receptor-mediated transport of IgG across the newborn rat intestine. J. Cell Biol. 1981;91:270–280. [Europe PMC free article] [Abstract] [Google Scholar]
  • Adams W.R., Kraft M.L. Electron microscopic study of the intestinal epithelium of mice infected with the agent of epizootic diarrhea of infant mice. Am. J. Pathol. 1967;51:39–60. [Europe PMC free article] [Abstract] [Google Scholar]
  • Alonso F.V., Compans R.W. Differential effect of monensin on enveloped viruses that form at distinct plasma membrane domains. J. Cell Biol. 1981;89:700–705. [Europe PMC free article] [Abstract] [Google Scholar]
  • Altstiel L., Branton D. Fusion of coated vesicles with lysosomes: Measurement with a fluorescence assay. Cell. 1983;32:921–929. [Abstract] [Google Scholar]
  • Anderson G.W., Kaplan J. Receptor-mediated endocytosis. In: Satir B., editor. Vol. 1. Liss; New York: 1983. pp. 1–52. (“Modern Cell Biology”). [Google Scholar]
  • Bar-Nun S., Kreibich G., Adesnik M., Alterman L., Negishi M., Sabatini D.D. Synthesis and insertion of cytochrome P-450 into endoplasmic reticulum membranes. Proc. Natl. Acad. Sci. U.S.A. 1980;77:965–969. [Europe PMC free article] [Abstract] [Google Scholar]
  • Bell R.M., Coleman R.A. Enzymes of glycerolipid synthesis in eukaryotes. Annu. Rev. Biochem. 1980;49:459–488. [Abstract] [Google Scholar]
  • Bergeron J.J.M., Kotwal G.J., Levine G., Bilan P., Rachubinsky R., Hamilton M., Shore G.C., Ghosh H.P. Intracellular transport of the glycoprotein G of vesicular stomatitis virus as visualized by electron microscope radioautography. J. Cell Biol. 1982;94:36–41. [Europe PMC free article] [Abstract] [Google Scholar]
  • Bergmann J.E., Tokuyasu K.T., Singer S.J. Passage of an integral membrane protein, the vesicular stomatitis virus glycoprotein through the Golgi apparatus en route to the plasma membrane. Proc. Natl. Acad. Sci. U.S.A. 1981;78:1746–1750. [Europe PMC free article] [Abstract] [Google Scholar]
  • Blobel G. Intracellular protein topogenesis. Proc. Natl. Acad. Sci. U.S.A. 1980;77:1496–1500. [Europe PMC free article] [Abstract] [Google Scholar]
  • Blobel G., Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J. Cell Biol. 1975;67:835–851. [Europe PMC free article] [Abstract] [Google Scholar]
  • Blobel G., Dobberstein B. Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J. Cell Biol. 1975;67:852–862. [Europe PMC free article] [Abstract] [Google Scholar]
  • Blobel G., Sabatini D.D. Ribosome-membrane interaction in eukaryotic cells. In: Manson L.A., editor. Vol. 2. Plenum; New York: 1971. pp. 193–195. (“Biomembranes”). [Google Scholar]
  • Blobel G., Walter P., Chang C.N., Goldman B., Erickson A.H., Lingappa V.R. Translocation of proteins across membranes: The signal hypothesis and beyond. Symp. Soc. Exp. Biol. 1979;33:9–36. [Abstract] [Google Scholar]
  • Blok J., Air G.M., Laver W.G., Ward C.W., Lilley G.G., Woods E.F., Roxburgh C.M., Inglis A.S. Studies on the size, chemical composition, and partial sequence of the neuraminidase (NA) from type A influenza viruses show that the N-terminal region of the NA is not processed and serves to anchor the NA in the viral membrane. Virology. 1982;119:109–121. [Abstract] [Google Scholar]
  • Boquet P., Duflot E. Tetanus toxin fragment forms channels in lipid vesicles at low pH. Proc. Natl. Acad. Sci. U.S.A. 1982;79:7614–7618. [Europe PMC free article] [Abstract] [Google Scholar]
  • Borgese N., Gaetani S. Site of synthesis of rat liver NADH cytochrome b5 reductase, an integral membrane protein. FEBS Lett. 1980;112:216–220. [Abstract] [Google Scholar]
  • Braell W.A., Lodish H.F. The erythrocyte anion transport protein is cotranslationally inserted into microsomes. Cell. 1982;28:23–31. [Abstract] [Google Scholar]
  • Branton D., Cohen C.M., Tyler J. Interactions of cytoskeletal proteins on the human erythrocyte membrane. Cell. 1981;24:24–32. [Abstract] [Google Scholar]
  • Bretscher M.S. Membrane structure: Some general principles. Science. 1973;181:622–629. [Abstract] [Google Scholar]
  • Bretscher M.S. Surface uptake by fibroblasts and its consequences. Cold Spring Harbor Symp. Quant. Biol. 1981;46:707–712. [Abstract] [Google Scholar]
  • Brown M.S., Goldstein J.L. Receptor-mediated endocytosis: Insights from the lipoprotein receptor system. Proc. Natl. Acad. Sci. U.S.A. 1979;76:3330–3337. [Europe PMC free article] [Abstract] [Google Scholar]
  • Brown M.S., Anderson R.G.W., Goldstein J.L. Recycling receptors: The round-trip itinerary of migrant membrane proteins. Cell. 1983;32:663–667. [Abstract] [Google Scholar]
  • Brown W.J., Farquhar M.C. The mannose-6-phosphate receptor is concentrated in cis Golgi cisternae. Cell. 1984;36:295–307. [Abstract] [Google Scholar]
  • Brunner J., Hauser H., Braun H., Wilson K.J., Wacker H., O'Neill B., Semenza G. The mode of association of the enzyme complex sucrase-isomaltase with the intestinal brush border membrane. J. Biol. Chem. 1979;254:1821–1828. [Abstract] [Google Scholar]
  • Cereijido M., Robbins E.S., Dolan W.J., Rotunno C.A., Sabatini D.D. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J. Cell Biol. 1978;77:853–880. [Europe PMC free article] [Abstract] [Google Scholar]
  • Chambard M., Gabrion J., Mauchamp J. Influence of collagen gel on the orientation of epithelial cell polarity: Follicle formation from isolated thyroid cells and from preformed monolayers. J. Cell Biol. 1981;91:157–166. [Europe PMC free article] [Abstract] [Google Scholar]
  • Chua N.-H., Schmidt G.W. Transport of proteins into mitochondria and chloroplasts. J. Cell Biol. 1979;81:461–483. [Europe PMC free article] [Abstract] [Google Scholar]
  • Claudio T., Ballivet M., Patrick J., Heineman S. Nucleotide and deduced aminoacid sequences of Torpedo californica acetylcholine receptor gamma subunit. Proc. Natl. Acad. Sci. U.S.A. 1983;80:1111–1115. [Europe PMC free article] [Abstract] [Google Scholar]
  • Colman P.M., Varghese J.N., Laver W.G. Structure of the catalytic and antigenic sites of influenza virus neuraminidase. Nature (London) 1983;303:41–44. [Abstract] [Google Scholar]
  • Davies P.J.A., Davies D.R., Levitzky A., Maxfield F.R., Milhaud P., Willingham M.C., Pastan I. Transglutaminase is essential in receptor mediated endocytosis of alpha-2-macroglobulin and polypeptide hormones. Nature (London) 1980;283:162–167. [Abstract] [Google Scholar]
  • Davis A.R., Bos J.T., Nayak D.P. Active influenza virus neuraminidase is expressed in monkey cells from cDNA cloned in simian virus 40 vectors. Proc. Natl. Acad. Sci. U.S.A. 1983;80:3976–3980. [Europe PMC free article] [Abstract] [Google Scholar]
  • Davis B.P., Tai P.-C. The mechanism of protein secretion across membranes. Nature (London) 1980;283:433–438. [Abstract] [Google Scholar]
  • Dobberstein B., Blobel G., Chua N.-H. In vitro synthesis and processing of a putative precursor for the small subunit of ribulose-l,5-biphosphate carboxylase of Chlamidomonas reinhardii. Proc. Natl. Acad. Sci. U.S.A. 1977;76:343–347. [Europe PMC free article] [Abstract] [Google Scholar]
  • Dobberstein B., Garoff H., Warren G., Robinson P.J. Cell free synthesis and membrane insertion of mouse H2d histocompatibility antigen and beta 2-microglobulin. Cell. 1979;17:759–769. [Abstract] [Google Scholar]
  • Donovan J.J., Simon M.I., Draper R.K., Montal M. Diphtheria toxin forms transmembrane channels in planar lipid bilayers. Proc. Natl. Acad. Sci. U.S.A. 1981;78:172–176. [Europe PMC free article] [Abstract] [Google Scholar]
  • Dunn W.A., Hubbard A.L., Aronson N.N., Jr. Low temperature selectively inhibits fusion between pinocytic vesicles and lysosomes during heterophagy of 125I-asialofetuin by the perfused rat liver. J. Biol. Chem. 1980;255:5971–5978. [Abstract] [Google Scholar]
  • Dunphy W.G., Rothman J.E. Comparmentation of asparagine-linked oligosaccharide processing in the Golgi apparatus. J. Cell Biol. 1983;97:270–275. [Europe PMC free article] [Abstract] [Google Scholar]
  • Early P., Rogers J., Davis M., Calame K., Bond M., Wall R., Hood L. Two mRNAs can be produced from a single immunoglobulin μ gene by alternative RNA processing pathways. Cell. 1980;20:313–319. [Abstract] [Google Scholar]
  • Ehrenreich J.H., Bergeron J.J.M., Siekievitz P., Palade G.E. Golgi fractions prepared from rat liver homogenates. I. Isolation procedure and morphological characterization. J. Cell Biol. 1973;59:45–72. [Europe PMC free article] [Abstract] [Google Scholar]
  • Elder J.T., Spritz R.A., Weissman S.M. Simian virus 40 as an eukaryotic cloning vehicle. Annu. Rev. Genet. 1981;15:295–340. [Abstract] [Google Scholar]
  • Emr S.D., Hall M.N., Silhavy T.J. A mechanism of protein localization: The signal hypothesis and bacteria. J. Cell Biol. 1980;86:701–711. [Europe PMC free article] [Abstract] [Google Scholar]
  • Erickson A.H., Blobel G. Early events in the biosynthesis of the lysosomal enzyme cathepsin D. J. Biol. Chem. 1979;254:11771–11774. [Abstract] [Google Scholar]
  • Esmon B., Novick P., Schekman R. Compartmentalized assembly of oligosaccharides on exported glycoproteins in yeast. Cell. 1980;25:451–460. [Abstract] [Google Scholar]
  • Evans G.A., Margulies D.H., Camerini-Otero R.D., Ozato K., Seidman J.G. Structure and expression of a mouse histocompatibility antigen gene, H-2Ld. Proc. Natl. Acad. Sci. U.S.A. 1982;79:1994–1998. [Europe PMC free article] [Abstract] [Google Scholar]
  • Farquhar M.G. Membrane recycling in secretory cells: Pathway to the Golgi complex. Ciba Found. Symp. 1982;92:157–183. [Abstract] [Google Scholar]
  • Farquhar M.G. Multiple pathways of exocytosis, endocytosis, and membrane recycling: Validation of a Golgi route. Fed. Proc., Fed. Am. Soc. Exp. Biol. 1983;42:2407–2413. [Abstract] [Google Scholar]
  • Farquhar M., Palade G. The Golgi apparatus (complex)-(1954–1981)-from artifact to center stage. J. Cell Biol. 1981;91:77s–103s. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ferro-Novick S., Hansen W., Schauer I., Scheckman R. Genes required for completion of import of proteins into the endoplasmic reticulum in yeast. J. Cell Biol. 1984;98:44–53. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ferro-Novick S., Novick P., Field C., Schekman R. Yeast secretory mutants that block the formation of active cell surface enzymes. J. Cell Biol. 1984;98:35–43. [Europe PMC free article] [Abstract] [Google Scholar]
  • Field C., Schekman R. Localized secretion of acid phosphatase reflects the pattern of cell surface growth in Saccharomyces cerevisiae. J. Cell Biol. 1980;86:123–128. [Europe PMC free article] [Abstract] [Google Scholar]
  • Fields S., Winter G., Brownlee G.G. Structure of the neuraminidase gene in human influenza virus A/PR/8/34. Nature (London) 1981;290:213–217. [Abstract] [Google Scholar]
  • Fitting T., Kabat D. Evidence for a glycoprotein “signal” involved in transport between subcellular organelles: Two membrane glycoproteins reach the cell surface at different rates. J. Biol. Chem. 1982;257:14011–14017. [Abstract] [Google Scholar]
  • Forgac M., Cantley L., Wiedenmann B., Altstiel L., Branton D. Clathrin coated vesicles contain an ATP-dependent proton pump. Proc. Natl. Acad. Sci. U.S.A. 1983;80:1300–1303. [Europe PMC free article] [Abstract] [Google Scholar]
  • Frank G., Brunner J., Hauser H., Wacker H., Semenza G., Zuber H. The hydro-phobic anchor of small intestinal sucrase-isomaltase. FEBS Lett. 1978;96:183–188. [Abstract] [Google Scholar]
  • Friend D.S., Farquhar M.G. Functions of coated vesicles during protein absortion in the rat vas deferens. J. Cell. Biol. 1967;35:357–376. [Europe PMC free article] [Abstract] [Google Scholar]
  • Fries D.S., Rothman J.E. Transport of vesicular stomatitis virus glycoprotein in a cell free extract. Proc. Natl. Acad. Sci. U.S.A. 1980;77:3870–3874. [Europe PMC free article] [Abstract] [Google Scholar]
  • Fries E., Rothman J.E. Transient activity of Golgi-like membranes as donors of vesicular stomatitis viral glycoprolein in vitro. J. Cell Biol. 1981;90:697–704. [Europe PMC free article] [Abstract] [Google Scholar]
  • Furthmayr H. Structural analysis of a membrane glycoprotein: Glycophorin A. J. Supramol. Struct. 1977;7:121–134. [Abstract] [Google Scholar]
  • Garoff H., Soderlund H. The amphiphilic membrane glycoproteins of Semliki Forest virus are attached to the lipid bilayer by their COOH-terminal ends. J. Mol. Biol. 1978;124:535–549. [Abstract] [Google Scholar]
  • Garoff H., Simons K., Dobberstein B. Assembly of the Semliki Forest virus membrane glycoproteins in the membrane of the endoplasmic reticulum in vitro. J. Mol. Biol. 1978;124:587–600. [Abstract] [Google Scholar]
  • Garoff H., Frischauf A.-M., Simons K., Lehrach H., Delius H. Nucleotide sequence of cDNA coding for Semliki forest virus membrane glycoproteins. Nature (London) 1980;288:236–241. [Abstract] [Google Scholar]
  • Garoff H., Kondor-Koch C., Petterson R., Burke R. Expression of Semliki Forest virus proteins from cloned complementary DNA. II. The membrane-spanning glycoprotein E2 is transported to the cell surface without its normal cytoplasmic domain. J. Cell Biol. 1983;97:652–658. [Europe PMC free article] [Abstract] [Google Scholar]
  • Gething M.J., Sambrook J. Cell-surface expression of influenza hemagglutinin from a cloned DNA copy of the RNA gene. Nature (London) 1981;292:620–625. [Abstract] [Google Scholar]
  • Gething M.J., Sambrook J. Construction of influenza hemagglutinin genes that code for intracellular and secreted forms of the protein. Nature (London) 1982;300:598–603. [Abstract] [Google Scholar]
  • Gething M.J., Bye J., Skehel J., Waterfield M. Cloning and DNA sequence of double stranded copies of hemagglutinin from H2 and H3 strains elucidates antigenic shift and drift in human influenza virus. Nature (London) 1980;287:301–306. [Abstract] [Google Scholar]
  • Geuze H.J., Slot J.W., Strouss G.J.A.M., Lodish H.F., Schwartz A.L. Intracellular site of asialoglycoprotein receptor-ligand uncoupling: Double-label immunoelectron microscopy during receptor-mediated endocytosis. Cell. 1983;32:277–287. [Abstract] [Google Scholar]
  • Gibson R., Leavitt R., Kornfeld S., Schlesinger S. Synthesis and infectivity of vesicular stomatitis virus containing non-glycosylated G protein. Cell. 1978;13:671–679. [Abstract] [Google Scholar]
  • Gilmore R., Blobel G., Walter P. Protein translocation across the endoplasmic reticulum. I. Detection in the microsomal membrane of a receptor for the signal recognition particle. J. Cell Biol. 1982;95:463–469. [Europe PMC free article] [Abstract] [Google Scholar]
  • Gilmore R., Walter P., Blobel G. Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor. J. Cell Biol. 1982;95:470–477. [Europe PMC free article] [Abstract] [Google Scholar]
  • Glickman J., Croen K., Kelly S., Al-Awqati Q. Golgi membranes contain an electrogenic H+ pump parallel to a chloride conductance. J. Cell Biol. 1983;97:1303–1308. [Europe PMC free article] [Abstract] [Google Scholar]
  • Gluzman Y. “Eukaryotic Viral Vectors.”. Cold Spring Harbor Laboratory; Cold Spring Harbor, New York: 1982. [Google Scholar]
  • Goldman B.M., Blobel G. Biogenesis of peroxysomes: Intracellular site of synthesis of catalase and uricase. Proc. Natl. Acad. Sci. U.S.A. 1978;75:5066–5070. [Europe PMC free article] [Abstract] [Google Scholar]
  • Goldstein J.L., Anderson R.G.W., Brown M.S. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature (London) 1979;279:679–685. [Abstract] [Google Scholar]
  • Gonzalez-Noriega A., Grubb J.H., Talkad V., Sly W.S. Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling. J. Cell Biol. 1980;85:839–852. [Europe PMC free article] [Abstract] [Google Scholar]
  • Green J., Griffiths G., Louvard D., Quinn P., Warren G. Passage of viral membrane proteins through the Golgi complex. J. Mol. Biol. 1981;152:663–698. [Abstract] [Google Scholar]
  • Green R.F., Meiss H.K., Rodriguez-Boulan E. Glycosylation does not determine segregation of viral glycoproteins in the plasma membrane of epithelial cells. J. Cell Biol. 1981;89:230–239. [Europe PMC free article] [Abstract] [Google Scholar]
  • Griffiths G., Brands R., Burke B., Louvard D., Warren G. Viral membrane proteins acquire galactose in trans Golgi cisternae during intracellular transport. J. Cell Biol. 1982;95:781–792. [Europe PMC free article] [Abstract] [Google Scholar]
  • Griffiths G., Quinn P., Warren G. Dissection of the Golgi complex. I. Monensin inhibits the transport of viral membrane proteins from medial to trans Golgi cisternae in baby hamster kidney cell infected with Semliki Forest virus. J. Cell Biol. 1983;96:835–850. [Europe PMC free article] [Abstract] [Google Scholar]
  • Gumbiner B., Kelly R.B. Two distinct intracellular pathways transport secretory and membrane glycoproteins to the surface of pituitary tumor cells. Cell. 1982;28:51–59. [Abstract] [Google Scholar]
  • Hartman J.R., Nayak D.P., Fareed G.C. Human influenza virus hemagglutinin is expressed in monkey cells using simian virus 40 vectors. Proc. Natl. Acad. Sci. U.S.A. 1982;79:233–237. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hasilik A., Neufeld E. Biosynthesis of lysosomal enzymes in fibroblasts—synthesis as precursors of higher molecular weight. J. Biol. Chem. 1980;255:4937–4945. [Abstract] [Google Scholar]
  • Hasilik A., Neufeld E. Biosynthesis of lysosomal enzymes in fibroblasts—phos-phorylation of mannose residues. J. Biol. Chem. 1980;255:4946–4950. [Abstract] [Google Scholar]
  • Hasilik A., Tanner W. Carbohydrate moieties of carboxypeptidase Y and perturbation of its biosynthesis. Eur. J. Biochem. 1978;91:567–571. [Abstract] [Google Scholar]
  • Hasilik A., Waheed A., von Figura K. Enzymatic phosphorylation of lysosomal enzymes in the presence of UDP-N-acetylglucosamine: Absence of activity in I-cell fibroblasts. Biochem. Biophys. Res. Commun. 1981;98:761–767. [Abstract] [Google Scholar]
  • Hauri H.P., Quaroni A., Isselbacher K.J. Biosynthesis of intestinal plasma membrane: Post-translational route and cleavage of sucrase-isomaltase. Proc. Natl. Acad. Sci. U.S.A. 1979;76:5183–5186. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hauri H.P., Wacker H., Rickli E.E., Bigler-Meier B., Quaroni A., Semenza G. Biosynthesis of sucrase isomaltase. Purification and NH2-terminal amino acid sequence of the rat sucrase isomaltase precursor (pro-sucrase-isomaltase) from fetal intestinal transplants. J. Biol. Chem. 1982;257:4522–4528. [Abstract] [Google Scholar]
  • Helenius A., Mellman I., Wall D., Hubbard A. Endosomes. Trends Biochem. Sci. 1983;8:245–250. [Google Scholar]
  • Herzog V., Farquhar M.G. Luminal membrane retrieved after exocytosis reaches most Golgi cistemae in secretory cells. Proc. Natl. Acad. Sci. U.S.A. 1977;74:5073–5077. [Europe PMC free article] [Abstract] [Google Scholar]
  • Herzog V., Miller F. Membrane retrieval in epithelial cells of isolated thyroid follicles. Eur. J. Cell Biol. 1979;19:203–215. [Abstract] [Google Scholar]
  • Hickman S., Neufeld E.F. A hypothesis for l-cell disease: Defective hydrolases that do not enter the lysosomes. Biochem. Biophys. Res. Commun. 1972;49:992–999. [Abstract] [Google Scholar]
  • Hirano H., Parkhouse B., Nicolson G.L., Lennox E.S., Singer J.S. Distribution of saccharide residues on membrane fragments from a myeloma-cell homogenate: Its implication membrane biogenesis. Proc. Natl. Acad. Sci. U.S.A. 1972;69:2945–2949. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hiti A.L., Davis A.R., Nayak D.P. Complete sequence analysis shows that the hemagglutinins of the H0 and H2 subtypes of human influenza are closely related. Virology. 1981;111:113–124. [Abstract] [Google Scholar]
  • Holmes I.H. Rotaviruses. In: Joklik W.K., editor. “The Reoviridae”. Plenum; New York: 1983. pp. 359–423. [Google Scholar]
  • Hubbard S.C., Ivatt R.J. Synthesis and processing of asparagine-linked oligosac-charides. Annu. Rev. Biochem. 1981;50:555–583. [Abstract] [Google Scholar]
  • Hunt L.A., Etchison J.A., Summers D.F. Oligosaccharide chains are trimmed during synthesis of the envelope glycoprotein of vesicular stomatitis virus. Proc. Natl. Acad. Sci. U.S.A. 1978;75:754–758. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ito A., Palade G.E. Presence of NADPH-cytochrome P-450 reductase in rat liver Golgi membranes. J. Cell Biol. 1978;79:590–597. [Europe PMC free article] [Abstract] [Google Scholar]
  • Jamieson J.D., Palade G. Synthesis, intracellular transport and discharge of secretory proteins in stimulated exocrine cells. J. Cell Biol. 1971;50:135–158. [Europe PMC free article] [Abstract] [Google Scholar]
  • Jamieson J.D., Palade G.E. Production of secretory proteins in animal cells. Int. Cell Biol. 1977:308–317. [Google Scholar]
  • Jelsema C.L., Morre D.J. Distribution of phospholipid biosynthetic enzymes among cell components of rat liver. J. Biol. Chem. 1978;253:7960–7971. [Abstract] [Google Scholar]
  • Johnson D.C., Schlesinger M.J. Vesicular stomatitis virus and Sindbis virus glycoprotein transport to the cell surface is inhibited by ionophores. Virology. 1980;103:407–424. [Abstract] [Google Scholar]
  • Jokinen M., Gahmberg C.G., Anderson L.A. Biosynthesis of the major human red cell sialoglycoprotein, glycophorin A, in a continuous cell line. Nature (London) 1979;279:604–607. [Abstract] [Google Scholar]
  • Kaariainen L., Hashimoto K., Saraste J., Virtanen I., Penttinen K. Monensin and FCCP inhibit the intracellular transport of alphavirus membrane glycoproteins. J. Cell Biol. 1980;87:783–791. [Europe PMC free article] [Abstract] [Google Scholar]
  • Katz F.N., Rothman J.E., Knipe D.M., Lodish H.F. Membrane assembly: Synthesis and intracellular processing of the vesicular stomatitis glycoprotein. J. Supramol. Struct. 1977;7:353–370. [Abstract] [Google Scholar]
  • Kehry M., Ewald S., Douglas R., Sibley Raschke C., Fambrough W.D., Hood L. The immunoglobulin μ chains of membrane- bound and secreted IgM molecules differ in their C-terminal segments. Cell. 1980;21:393–406. [Abstract] [Google Scholar]
  • Kenny A.J., Maroux S. Topology of microvillar membrane hydrolases of kidney and intestine. Physiol. Rev. 1982;62:91–128. [Abstract] [Google Scholar]
  • Knipe D.M., Baltimore D., Lodish H.F. Maturation of viral proteins in cells infected with temperature-sensitive mutants of vesicular stomatitis virus. J. Virol. 1977;21:1149–1158. [Europe PMC free article] [Abstract] [Google Scholar]
  • Knipe D.M., Lodish H.F., Baltimore D. Localization of two cellular forms of the vesicular stomatitis virus glycoprotein. J. Virol. 1977;21:1121–1127. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kondor-Koch C., Riedel H., Soderberg K., Garoff H. Expression of the structural protein of Semliki forest virus from cloned cDNA microinjected into the nucleous of baby hamster kidney cells. Proc. Natl. Acad. Sci. U.S.A. 1982;79:4525–4529. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kondor-Koch C., Burke B., Garoff H. Expression of Semliki Forest virus proteins from cloned complementary DNA. I. Fusion activity of the spike glycoprotein. J. Cell Biol. 1983;97:644–651. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kraehenbuhl J.P., Kuhn L. Transport of immunoglobulins across epithelia. In: Silverstein S.C., editor. “Transport of macromolecules in cellular systems”. Dahlem Konferenzen; Berlin: 1978. pp. 213–228. [Google Scholar]
  • Krangel M.S., Orr H.T., Strominger J.L. Assembly and maturation of HLA-A and HLA-B in vivo. Cell. 1979;18:979–991. [Abstract] [Google Scholar]
  • Kreibich G., Czako-Graham M., Grebenau R., Mok W., Rodriguez-Boulan E., Sabatini D.D. Characterization of the ribosomal binding site in rat liver rough microsomes: Ribophorins I and II, two integral membrane proteins related to ribosome binding. J. Supramol. Struct. 1978;8:279–302. [Abstract] [Google Scholar]
  • Kreibich G., Freinstein C.M., Pereyra B.N., Ulrich B.L., Sabatini D.D. Proteins of rough microsomal membranes related to ribosome binding. II. Cross-linking of bound ribosomes to specific membrane proteins exposed at the binding sites. J. Cell Biol. 1978;77:488–506. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kreibich G., Ulrich B.L., Sabatini D.D. Proteins of rough microsomal membranes related to ribosome binding. I. Identification of ribophorins I and II, membrane proteins characteristic of rough microsomes. J. Cell Biol. 1978;77:464–487. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kreil G. Transfer of proteins across membranes. Annu. Rev. Biochem. 1981;50:317–348. [Abstract] [Google Scholar]
  • Lefay F. Envelope proteins of vesicular stomatitis virus: Effects of temperature sensitive mutations in complementation groups III and V. J. Virol. 1974;14:1220–1228. [Europe PMC free article] [Abstract] [Google Scholar]
  • Lazarow P. Functions and biosynthesis of lysosomes. Int. Cell Biol. 1980:633–639. [Google Scholar]
  • Lazarowitz S.G., Choppin P.W. Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology. 1975;68:440–454. [Abstract] [Google Scholar]
  • Leblond C.P., Bennett G. Role of the Golgi apparatus in terminal glycosylation. Int. Cell Biol. 1977:326–336. [Google Scholar]
  • Ledford B.E., Davis D.F. Kinetics of serum protein secretion by cultured hepatoma cells: Evidence for multiple secretory pathways. J. Biol. Chem. 1983;258:3304–3308. [Abstract] [Google Scholar]
  • Lehle L., Cohen R.E., Ballou C.E. Carbohydrate structure of yeast invertase. J. Biol. Chem. 1979;254:12209–12218. [Abstract] [Google Scholar]
  • Lenard J. Virus envelopes and plasma membranes. Annu. Rev. Biophys. Bioeng. 1978;7:139–165. [Abstract] [Google Scholar]
  • Lenard J., Compans R.W. The membrane structure of lipid-containing viruses. Biochim. Biophys. Acta. 1974;344:51–94. [Europe PMC free article] [Abstract] [Google Scholar]
  • Lennarz W.J. In: “The Biochemistry of Glycoproteins and Proteoglycans”. Lennarz W.J., editor. Plenum; New York: 1980. pp. 35–84. [Google Scholar]
  • Lingappa V.R., Katz F.N., Lodish H.F., Blobel G. A signal sequence for the insertion of a transmembrane glycoprotein. Similarities to the signals of secretory proteins in primary structure and function. J. Biol. Chem. 1978;253:8667–8670. [Abstract] [Google Scholar]
  • Lodish H.F., Kong N. Glucose removal from N-linked oligosaccharides is required for efficient maturation of certain secretory glycoproteins from the rough endoplasmic reticulum to the Golgi complex. J. Cell Biol. 1984;98:1720–1729. [Europe PMC free article] [Abstract] [Google Scholar]
  • Lodish H.F., Braell W.A., Schwartz A.L., Strous G.J.A.M., Zilberstein A. Synthesis and assembly of membrane and organelle proteins. Int. Rev. Cytol. Suppl. 1981;12:247–307. [Abstract] [Google Scholar]
  • Lodish H.F., Kong N., Snider M., Strouss G.J.A.M. Hepatoma secretory proteins migrate from the rough endoplasmic reticulum to the Golgi at characteristic rates. Nature (London) 1983;304:80–83. [Abstract] [Google Scholar]
  • Lohmeyer J., Klenk H.D. A mutant of influenza virus with a temperature sensitive defect in the posttranslational processing of the hemagglutinin. Virology. 1979;93:134–145. [Abstract] [Google Scholar]
  • Lojda Z. Cytochemistry of enterocytes and of other cells in the mucous membrane of the small intestine. Biomembranes. 1974;4A:43–122. [Abstract] [Google Scholar]
  • Louvard D., Reggio H., Warren G. Antibodies to the Golgi complex and rough endoplasmic reticulum. J. Cell Biol. 1982;92:92–107. [Europe PMC free article] [Abstract] [Google Scholar]
  • Lusis A.J., Swank R.T. Regulation of location of intracellular proteins. In: Prescott D.M., Goldstein L., editors. Vol. 4. Academic Press; New York: 1980. pp. 339–391. (“Cell Biology, a Comprehensive Treatise”). [Google Scholar]
  • McKusick V.A., Neufeld E.F., Kelly T.T. Two disorders of lysosomal enzyme localization mucolipidosis II (ML II, I-cell disease, inclusion cell disease and mucolipidosis III (MLIII), pseudo-Hurler polydistrophy) In: Stanbury J.B., Wyngaarden J.B., Fredrickson D.S., editors. “The Metabolic Basis of Inherited Disease”. McGraw Hill; New York: 1972. pp. 1299–1302. [Google Scholar]
  • Marchesi V.T., Furthmayr H., Tomita M. The red cell membrane. Annu. Rev. Biochem. 1976;45:667–698. [Abstract] [Google Scholar]
  • Marsh M., Bolzau E., Helenius A. Penetration of Semliki Forest Virus from acidic prelysosomal vacuoles. Cell. 1983;32:931–940. [Abstract] [Google Scholar]
  • Matlin A., Simons K. Reduced temperature prevents transfer of a membrane glycoprotein to the cell surface but not terminal glycosylation. Cell. 1983;34:233–243. [Abstract] [Google Scholar]
  • Matlin K., Bainton D.F., Pesonen M., Louvard D., Genty N., Simons K. Transepithelial transport of a viral membrane glycoprotein implanted into the apical plasma membrane of Madin-Darby Canine Kidney cells. I. Morphological evidence. J. Cell Biol. 1983;97:627–637. [Europe PMC free article] [Abstract] [Google Scholar]
  • Maxfield F.R. Weak bases and ionophores rapidly and reversibly raise the pH of endocytic vesicles in cultured mouse fibroblasts. J. Cell Biol. 1982;95:676–681. [Europe PMC free article] [Abstract] [Google Scholar]
  • Meiss H.K., Green R., Rodriguez-Boulan E.J. Lectin resistant mutants of polarized epithelial cells. Mol. Cell. Biol. 1982;2:1287–1294. [Europe PMC free article] [Abstract] [Google Scholar]
  • Meyer D.I., Dobberstein B. A membrane component essential for vectorial translocation of nascent proteins across the endoplasmic reticulum: Requirement for its extraction and reassociation with the membrane. J. Cell Biol. 1980;87:498–502. [Europe PMC free article] [Abstract] [Google Scholar]
  • Meyer D.I., Dobberstein B. Identification and characterization of a membrane component essential for the translocation of nascent proteins across the membrane of the endoplasmic reticulum. J. Cell Biol. 1980;87:503–508. [Europe PMC free article] [Abstract] [Google Scholar]
  • Meyer D.I., Krause E., Dobberstein B. Secretory protein translocation across membranes—the role of the “docking protein.” Nature (London) 1982;297:647–650. [Abstract] [Google Scholar]
  • Milstein C., Brownlee G.G., Harrison T.M., Mathews M.B. A possible precursor of immunoglobulin light chains. Nature (London) New Biol. 1972;239:117–120. [Abstract] [Google Scholar]
  • Min Jou W., Verhoeyen M., Devos R., Saman E., Fang R., Huylebroeck D., Fiers W., Threlfall G., Barber C., Carey N., Emtage S. Complete structure of the hemagglutinin gene from the human influenza A/Victoria/3/75 (H3N2) strain as determined from cloned DNA. Cell. 1980;19:683–696. [Abstract] [Google Scholar]
  • Misek D.E., Bard E., Rodriguez-Boulan E. Biogenesis of epithelial cell polarity. Intracellular sorting and vectorial exocytosis of an apical plasma membrane glycoprotein. Cell. 1984;39:537–546. [Abstract] [Google Scholar]
  • Misfeldt D.S., Hamamoto S.T., Pitelka D.R. Transepithelial transport in cell culture. Proc. Natl. Acad. Sci. U.S.A. 1976;73:1212–1216. [Europe PMC free article] [Abstract] [Google Scholar]
  • Moore H., Gumbiner P.B., Kelly R.B. A subclass of proteins and sulfated macromolecules secreted by AtT-20 (mouse pituitary tumor) cells is sorted with adrenocorticotropin into dense secretory granules. J. Cell Biol. 1983;97:810–817. [Europe PMC free article] [Abstract] [Google Scholar]
  • Moore H.-P., Gumbiner B., Kelly R.B. Chloroquine diverts ACTH from a regulated to a constitutive secretory pathway in AtT-20 cells. Nature (London) 1983;302:434–436. [Abstract] [Google Scholar]
  • Moriarty A.M., Hoyer B.H., Shih J.W.K., Gehrin J.L., Hamer D.H. Expression of the hepatitis B virus surface antigen gene in cell culture by using a simian virus 40 vector. Proc. Natl. Acad. Sci. U.S.A. 1981;78:2606–2610. [Europe PMC free article] [Abstract] [Google Scholar]
  • Mostov K.E., Friedlander M., Blobel G. The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains. Nature (London) 1984;308:37–43. [Abstract] [Google Scholar]
  • Mudd J.A. Glycoprotein fragment associated with vesicular stomatitis virus after proteolytic digestion. Virology. 1974;62:573–577. [Abstract] [Google Scholar]
  • Mulligan R.C., Berg P. Expression of a bacterial gene in mammalian cells. Science. 1980;209:1422–1427. [Abstract] [Google Scholar]
  • Nakamura K., Compans R.W. The cellular site of sulfation of influenza viral glycoproteins. Virology. 1977;79:381–392. [Abstract] [Google Scholar]
  • Neufeld E.F., Sando G.N., Garvin A.J., Rome L.H. The transport of lysosomal enzymes. J. Supramol. Struct. 1977;6:95–101. [Abstract] [Google Scholar]
  • Noda M., Takahashi H., Tanabe T., Toyosato M., Furutani Y., Hirose T., Asai M., Inayama S., Miyata T., Numa S. Primary structure of alpha subunit percursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature (London) 1982;299:793–797. [Abstract] [Google Scholar]
  • Noda M., Furutani Y., Takahashi H., Toyosato M., Tanabe T., Shimizu S., Kikyotani S., Kayano T., Hirose T., Inayama S., Numa S. Cloning and sequence analysis of calf cDNA and human genomic DNA encoding -subunit precursor of muscle acetylcholine receptor. Nature (London) 1983;305:818–823. [Abstract] [Google Scholar]
  • Noda M., Takahashi H., Tanabe T., Toyosato M., Kikyotani S., Furutani Y., Hirose T., Takashima H., Inayama S., Miyata T., Numa S. Structural homology of Torpedo californica acetylcholine receptor subunits. Nature (London) 1983;302:528–532. [Abstract] [Google Scholar]
  • Noda M., Takahashi H., Tanabe T., Toyosato M., Kikyotani S., Hiose T., Asai M., Takashima H., Inayama S., Miyata T., Numa S. Primary structures of beta and delta subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature (London) 1983;301:251–255. [Abstract] [Google Scholar]
  • Novick P., Schekman R. Secretion and cell surface growth are blocked in a temperature-sensitive mutant of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 1979;76:1858–1862. [Europe PMC free article] [Abstract] [Google Scholar]
  • Novick P., Schekman R. Export of major cell surface proteins is blocked in yeast secretory mutants. J. Cell Biol. 1983;96:541–547. [Europe PMC free article] [Abstract] [Google Scholar]
  • Novick P., Field C., Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell. 1980;21:205–215. [Abstract] [Google Scholar]
  • Novick P., Ferro S., Scheckman R. Order of events in the yeast secretory pathway. Cell. 1981;25:461–469. [Abstract] [Google Scholar]
  • Novikoff A.B. The endoplasmic reticulum: A cytochemist's view (a review) Proc. Natl. Acad. Sci. U.S.A. 1976;73:2781–2787. [Europe PMC free article] [Abstract] [Google Scholar]
  • Novikoff A.B., Novikoff P.M. Cytochemical contribution to differentiating GERL from Golgi apparatus. Histochem. J. 1977;9:525–552. [Abstract] [Google Scholar]
  • Novikoff P.M., Novikoff A.B., Quintana N., Hauw J.J. Golgi apparatus, GERL, and lysosomes of neurons in rat dorsal root ganglia, studied by thick section and thin section cytochemistry. J. Cell Biol. 1971;50:859–886. [Europe PMC free article] [Abstract] [Google Scholar]
  • Onishi H.R., Tkacz J.S., Lampen J.O. Glycoprotein nature of yeast alkaline phosphatase. Formation of an active enzyme in the presence of tunicamycin. J. Biol. Chem. 1979;254:11943–11952. [Abstract] [Google Scholar]
  • Op den Kamp J.A.F. Lipid asymmetry in membranes. Annu. Rev. Biochem. 1979;48:47–71. [Abstract] [Google Scholar]
  • Owen M.J., Kissonergis A.M., Lodish H.F., Crumpton M.J. Biosynthesis and maturation of HLA-DR antigens in vivo. J. Biol. Chem. 1981;256:8887–8893. [Abstract] [Google Scholar]
  • Pagano R.E., Longmuir K.J. Intracellular translocation and metabolism of fluorescent lipid analogues in cultured mammalian cells. Trends Biochem. Sci. 1983;8:157–161. [Google Scholar]
  • Palade G. Intracellular aspects of the process of protein secretion. Science. 1975;189:347–358. [Abstract] [Google Scholar]
  • Pappenheimer A.M., Jr. Diphtheria: Molecular biology of an infectious process. Trends Biochem. Sci. 1978;3:N220–N224. [Google Scholar]
  • Parham P., Alpert B.N., Orr H.T., Strominger J.L. Carbohydrate moiety of HLA antigens. Antigenic properties and aminoacid sequences around the site of glycosylation. J. Biol. Chem. 1977;252:7555–7567. [Abstract] [Google Scholar]
  • Parodi A.J., Leloir L.F. The role of lipid intermediates in the glycosylation of proteins in the eukaryotic cell. Biochim. Biophys. Acta. 1979;559:1–37. [Abstract] [Google Scholar]
  • Pastan I., Willingham M.C. Receptor mediated endocytosis, coated pits, receptosomes and the Golgi. Trends Biochem. Sci. 1983;8:250–254. [Google Scholar]
  • Pearson G.R., McNulty M.S. Ultrastructural changes in small intestinal epithelium of neonatal pigs infected with pig rotavirus. Arch. Virol. 1979;59:127–136. [Abstract] [Google Scholar]
  • Pease L.R., Nathenson S.G., Leinward L.A. Mapping class I gene sequences in the major histocompatibility complex. Nature (London) 1982;298:382–385. [Abstract] [Google Scholar]
  • Pesonen M., Simons K. Transepithelial transport of a viral membrane glycoprotein implanted into the apical plasma membrane of Madin-Darby Canine kidney cells. II. Immunological quantitation. J. Cell Biol. 1983;97:638–643. [Europe PMC free article] [Abstract] [Google Scholar]
  • Pisam M., Ripoche P. Redistribution of surface macromolecules in dissociated epithelial cells. J. Cell Biol. 1976;71:907–920. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ploegh H.L., Cannon L.E., Strominger J.L. Cell free translation of the mRNAs for the heavy and light chains of HLA-A and HLA-B antigens. Proc. Natl. Acad. Sci. U.S.A. 1979;76:2273–2277. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ploegh H.L., Orr H.T., Strominger J.L. Major histocompatibility antigens: The human (HLA-A, -B, -C) and murine (H-2K, H-2D) class I molecules. Cell. 1981;24:287–299. [Abstract] [Google Scholar]
  • Pollack L., Atkinson P.H. Correlation of glycosylation forms with position in aminoacid sequence. J. Cell Biol. 1983;97:293–300. [Europe PMC free article] [Abstract] [Google Scholar]
  • Porter A.G., Carber C., Carey N.H., Hallewell R.A., Threlfall G., Emtage J.S. Complete nucleotide sequence of an influenza virus hemagglutinin gene from cloned DNA. Nature (London) 1979;282:471–477. [Abstract] [Google Scholar]
  • Porter K.R., Claude A., Fullam E. A study of tissue culture cells by electron microscopy. J. Exp. Med. 1945;81:233–244. [Europe PMC free article] [Abstract] [Google Scholar]
  • Poyton R.O. Vol. 2. Liss; New York: 1983. Memory and membranes: The expression of genetic and spatial memory during the assembly of organelle macrocompartments. (“Modern Cell Biology,”). 15–72. [Google Scholar]
  • Rachubinski R.A., Verma D.P.S., Bergeron J.J.M. Synthesis of rat liver microsomal cytochrome b5 by free ribosomes. J. Cell Biol. 1980;84:705–716. [Europe PMC free article] [Abstract] [Google Scholar]
  • Reitman M., Kornfeld S. UDP-N-acetylglucosamine:glycoprotein N-acetylglucosa-mine-1-phosphotransfera.se: Proposed enzyme for the phosphorylation of the high mannose oligosaccharide units of lysosomal enzymes. J. Biol. Chem. 1981;256:4275–4281. [Abstract] [Google Scholar]
  • Reitman M., Varki A., Kornfeld S. Fibroblasts from patients with l-cell disease and pseudo-Hurler polydistrophy are deficient in UDP-N-acetylglucosamine:glycoprotein N-acetyl-glucosaminylphosphotransferase activity. J. Clin. Invest. 1981;67:1574–1579. [Europe PMC free article] [Abstract] [Google Scholar]
  • Renooij W., van Golde L.M.G., Zwaal R.F.A., Roelofsen B., van Deenen L.L.M. Preferential incorporation of fatty acids at the inside of human erythrocyte membranes. Biochim. Biophys. Acta. 1974;363:287–292. [Abstract] [Google Scholar]
  • Ribgy P.W.J. Expression of cloned genes in eukaryotic cells using vector systems derived from viral replicons. In: Williamson R., editor. Vol. 3. Academic Press; New York: 1982. pp. 83–141. (“Genetic Engineering”). [Google Scholar]
  • Rindler M.J., Ivanov I.E., Rodriguez-Boulan E., Sabatini D.D. Biogenesis of epithelial cell plasma membranes. Ciba Found. Symp. 1982;92:184–202. [Abstract] [Google Scholar]
  • Rindler M.J., Ivanov I.E., Plesken H., Rodriguez-Boulan E., Sabatini D.D. Viral glycoproteins destined for apical or basolateral plasma membrane domains traverse the same Golgi apparatus during their intracellular transport in doubly infected Madin-Darby Canine Kidney cells. J. Cell Biol. 1984;98:1304–1319. [Europe PMC free article] [Abstract] [Google Scholar]
  • Robbins P.W., Hubbard C., Turco S.J., Wirth D.F. Proposal for a common oligosaccharide intermediate in the synthesis of membrane glycoproteins. Cell. 1977;12:893–900. [Abstract] [Google Scholar]
  • Rodewald R. Intestinal transport of antibodies in the newborn rat. J. Cell Biol. 1973;58:189–211. [Europe PMC free article] [Abstract] [Google Scholar]
  • Rodewald R. Distribution of immunoglobulin G receptors in the small intestine of the young rat. J. Cell Biol. 1980;85:18–32. [Europe PMC free article] [Abstract] [Google Scholar]
  • Rodriguez-Boulan E. Vol. 1. Liss; New York: 1983. Membrane biogenesis, enveloped RNA viruses and epithelial polarity. (“Modern Cell Biology,”). 119–170. [Google Scholar]
  • Rodriguez-Boulan E., Pendergast M. Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells. Cell. 1980;20:45–54. [Abstract] [Google Scholar]
  • Rodriguez-Boulan E., Sabatini D.D. Asymmetric budding of viruses in epithelial monolayers: A model system for study of epithelial polarity. Proc. Natl. Acad. Sci. U.S.A. 1978;75:5071–5075. [Europe PMC free article] [Abstract] [Google Scholar]
  • Rodriguez-Boulan E., Kreibich G., Sabatini D.D. Spatial orientation of glycoproteins in membranes of rat liver rough microsomes. I. Localization of lectin-binding sites in microsomal membranes. J. Cell Biol. 1978;78:874–893. [Europe PMC free article] [Abstract] [Google Scholar]
  • Rodriguez-Boulan E., Sabatini D.D., Pereyra B.N., Kreibich G. Spatial orientation of glycoproteins in membranes of rat liver rough microsomes. II. Transmembrane disposition and characterization of glycoproteins. J. Cell Biol. 1978;78:894–909. [Europe PMC free article] [Abstract] [Google Scholar]
  • Rodriguez-Boulan E., Paskiet K.T., Sabatini D.D. Assembly of enveloped viruses in MDCK cells: Polarized budding from single attached cells and from clusters of cells in suspension. J. Cell Biol. 1983;96:866–874. [Europe PMC free article] [Abstract] [Google Scholar]
  • Rodriguez-Boulan E., Paskiet K.T., Salas P.J.I., Bard E. Intracellular transport of influenza virus hemagglutinin to the apical surface of Madin-Darby Canine Kidney cells. J. Cell Biol. 1984;98:308–319. [Europe PMC free article] [Abstract] [Google Scholar]
  • Rogers J., Early P., Carter C., Calame K., Bond M., Hood L., Wall R. Two mRNAs with different 3′ ends encode membrane-bound and secreted forms of immunoglobulin μ chain. Cell. 1980;20:303–312. [Abstract] [Google Scholar]
  • Rose J.K., Bergman J.E. Expression from cloned cDNA of cell-surface secreted forms of the glycoprotein of vesicular stomatitis virus in eukaryotic cells. Cell. 1982;30:753–762. [Abstract] [Google Scholar]
  • Rose J.K., Bergman J.E. Altered cytoplasmic domains affect intracellular transport of the vesicular stomatitis virus glycoprotein. Cell. 1983;34:513–524. [Abstract] [Google Scholar]
  • Rose J.K., Welch W.J., Sefton B.M., Esch F.S., Ling N.C. Vesicular stomatitis virus glycoprotein is anchored in the viral membrane by a hydrophobic domain near the COOH terminus. Proc. Natl. Acad. Sci. U.S.A. 1980;77:3884–3888. [Europe PMC free article] [Abstract] [Google Scholar]
  • Rosenfeld M.G., Kreibich G., Popov D., Kato K., Sabatini D.D. Biosynthesis of lysosomal hydrolases: Their synthesis in bound polysomes and the role of co- and post-transla-tional processing in determining their subcellular distribution. J. Cell Biol. 1982;93:135–143. [Europe PMC free article] [Abstract] [Google Scholar]
  • Roth J., Berger E.G. Immunocytochemical localization of galactosyl transferase in HeLa cells: Codistribution with thiamine pyrophosphatase in trans golgi cisternae. J. Cell Biol. 1982;92:223–229. [Europe PMC free article] [Abstract] [Google Scholar]
  • Roth M.G., Fitzpatrick J., Compans R.W. Polarity of influenza and vesicular stomatitis virus maturation in MDCK cells: Lack of requirement for glycosylation of viral glycoproteins. Proc. Nail. Acad. Sci. U.S.A. 1979;76:6430–6434. [Europe PMC free article] [Abstract] [Google Scholar]
  • Roth M.G., Compans R.W., Giusti L., Davis A.R., Nayak D.P., Gething M.J., Sambrook J. Influenza virus hemagglutinin expression is polarized in cells infected with recombinant SV40 viruses carrying cloned hemagglutinin DNA. Cell. 1983;33:435–443. [Abstract] [Google Scholar]
  • Rothman J.E. The Golgi apparatus: Two organelles in tandem. Science. 1981;213:1212–1219. [Abstract] [Google Scholar]
  • Rothman J.E., Fine R.E. Coated vesicles transport newly synthesized membrane glycoproteins from endoplasmic reticulum to plasma membrane in two successive stages. Proc. Natl. Acad. Sci. U.S.A. 1980;77:780–784. [Europe PMC free article] [Abstract] [Google Scholar]
  • Rothman J.E., Fries E. Transport of newly synthesized vesicular stomatitis viral glycoprotein to purified Golgi membranes. J. Cell Biol. 1981;89:162–168. [Europe PMC free article] [Abstract] [Google Scholar]
  • Rothman J.E., Lenard J. Membrane asymmetry. The nature of membrane asymmetry provides clues to the puzzle of how membranes are assembled. Science. 1977;195:743–753. [Abstract] [Google Scholar]
  • Rothman J.E., Lodish H.F. Synchronized transmembrane insertion and glycosylation of a nascent membrane protein. Nature (London) 1977;269:775–780. [Abstract] [Google Scholar]
  • Rothman J.E., Bursztyn-Pettegrew H., Fine R.E. Transport of the membrane glycoprotein of vesicular stomatitis virus to the cell surface in two stages by clathrin coated vesicles. J. Cell Biol. 1980;86:162–171. [Europe PMC free article] [Abstract] [Google Scholar]
  • Sabatini D.D., Kreibich G., Morimoto T., Adesnik M. Mechanisms for the incorporation of proteins in membranes and organelles. J. Cell Biol. 1982;92:1–22. [Europe PMC free article] [Abstract] [Google Scholar]
  • Salas, P. J. I., Vega-Salas, D. E., Cereijido, M., and Rodriguez-Boulan, E. 1985. Role of cytoskeleton in epithelial cell polarity. Effect of cytochalasin D and Colchicine on the polarized budding of enveloped viruses from Madin-Darby Canine Kidney (MDCK) cells. Submitted
  • Schachter H., Roseman S. Mammalian glycosyl-transferases. In: Lennarz W., editor. “The Biochemistry of Glycoproteins and Proteoglycans”. Plenum; New York: 1980. pp. 85–160. [Google Scholar]
  • Schekman R. The secretory pathway in the yeast. Trends Biochem. Sci. 1982;7:243–246. [Google Scholar]
  • Schmidt M.F.G., Schlesinger M. Fatty acid binding to vesicular stomatitis virus glycoprotein: A new type of post-translational modification of the viral glycoprotein. Cell. 1979;17:813–819. [Abstract] [Google Scholar]
  • Schneider D.L. ATP-dependent acidification of intact and disrupted lysosomes. Evidence for an ATP-driven proton pump. J. Biol. Chem. 1981;256:3858–3864. [Abstract] [Google Scholar]
  • Semenza G. Small intestinal disaccharidases: their properties and role as sugar translocators across natural and artificial membranes. In: Martonosi A., editor. “The Enzymes of Biological Membranes”. Plenum; New York: 1976. [Google Scholar]
  • Shida H., Matsumoto S. Analysis of the hemagglutinin glycoprotein from mutants of vaccinia virus that accumulates on the nuclear envelope. Cell. 1983;33:423–434. [Abstract] [Google Scholar]
  • Simons K., Garoff H. The budding mechanisms of enveloped animal viruses. J. Gen. Virol. 1980;50:1–21. [Abstract] [Google Scholar]
  • Singer P.A., Williamson A.R. Different species of messenger RNA encode receptor and secretory IgM chains differing at their carboxyl termini. Nature (London) 1980;285:294–299. [Abstract] [Google Scholar]
  • Sleigh M.J., Both G.W., Brownlee G.G., Bender V.J., Moss B.A. The haemagglutinin gene of influenza A virus: nucleotide sequence analysis of cloned DNA copies. In: Laverand W.G., Air G.M., editors. “Structure and variation in influenza virus”. Elsevier; Amsterdam: 1980. pp. 69–78. [Google Scholar]
  • Sly W. The uptake and transport of lysosomal enzymes. In: Horowitz M.I., editor. IV. Academic Press; New York: 1982. pp. 3–25. (“The Glycoconjugates”). [Google Scholar]
  • Solari R., Kraehenbuhl J.P. Biosynthesis of the IgA antibody receptor: A model for the transepithelial sorting of a membrane glycoprotein. Cell. 1984;36:61–71. [Abstract] [Google Scholar]
  • Sprague J., Condra J.H., Arnheiter H., Lazzarini R.A. Expression of a recombinant DNA gene coding for the vesicular stomatitis virus nucleocapsid protein. J. Virol. 1983;45:773–781. [Europe PMC free article] [Abstract] [Google Scholar]
  • Srinivas R.V., Alonso-Caplen F.V., Compans R.W. Glycosylation and transport of two viral membrane glycoproteins that are anchored by amino-terminal signal peptide sequences. J. Cell Biol. 1983;97:444a. [Europe PMC free article] [Abstract] [Google Scholar]
  • Steck T.L. The band 3 protein of the human red cell membrane: A review. J. Supramol. Struct. 1978;8:311–324. [Abstract] [Google Scholar]
  • Steiner D.F., Clark J.L., Nolan C., Rubenstein A.H., Margoliash E., Melani F., Oyer P.E. The biosynthesis of insulin and some speculations regarding the pathogenesis of human diabetes. In: Cerasi E., Luft R., editors. “The Pathogenesis of Diabetes Mellitus”. Almqvist & Wiksell; Stockholm: 1970. pp. 123–132. [Google Scholar]
  • Steinman R.M., Brodie S.E., Cohn Z.A. Membrane flow during pinocytosis. A stereologic analysis. J. Cell Biol. 1976;68:665–687. [Europe PMC free article] [Abstract] [Google Scholar]
  • Steinman R.M., Mellman I.S., Muller W.A., Cohn Z.A. Endocytosis and the recycling of plasma membrane. J. Cell Biol. 1983;96:1–27. [Europe PMC free article] [Abstract] [Google Scholar]
  • Strawser L.D., Touster O. The cellular processing of lysosomal enzymes and related proteins. Rev. Physiol. Biochem. Pharmacol. 1980;87:169–210. [Abstract] [Google Scholar]
  • Strous G.J.A.M., Berger E.C. Biosynthesis, intracellular transport and release of the Golgi enzyme galactosyl transferace (lactose synthetase A protein) in HeLa cells. J. Biol. Chem. 1982;257:7623–7628. [Abstract] [Google Scholar]
  • Strous G.J.A.M., Lodish H.F. Intracellular transport of secretory and membrane proteins in hepatoma cells infected by vesicular stomatitis virus. Cell. 1980;22:709–717. [Abstract] [Google Scholar]
  • Strous G.J., van Kerkhof P., Willemsen R., Geuze H.J., Berger E.C. Transport and topology of galactosyl transferase in endomembranes of HeLa cells. J. Cell Biol. 1983;97:723–727. [Europe PMC free article] [Abstract] [Google Scholar]
  • Sturman L.S., Holmes K.V. The molecular biology of corona viruses. Adv. Virus Res. 1983;28:35–112. [Europe PMC free article] [Abstract] [Google Scholar]
  • Sveda M.M., Lai C.J. Functional expression in primate cells of cloned cDNA coding for the hemagglutinin surface glycoprotein of influenza virus. Proc. Nail. Acad. Sci. U.S.A. 1981;78:5488–5492. [Europe PMC free article] [Abstract] [Google Scholar]
  • Sveda M.M., Markoff L., Lai C.J. Cell surface expression of the influenza virus hemagglutinin requires the hydrophobic carboxy-terminal sequences. Cell. 1982;30:649–656. [Abstract] [Google Scholar]
  • Tabas I., Kornfeld S. Biosynthetic intermediates of beta-glucuronidase contain high mannose oligosaccharides with blocked phosphate residues. J. Biol. Chem. 1980;255:6633–6639. [Abstract] [Google Scholar]
  • Tabas I., Schlesinger S., Kornfeld S. Processing of high mannose oligosaccharides to form complex type oligosaccharides on the newly synthesized polypeptides of the vesicular stomatitis virus G protein and the IgG heavy chain. J. Biol. Chem. 1978;253:716–722. [Abstract] [Google Scholar]
  • Tartakoff A.M. The Golgi complex: Crossroads for vesicular traffic. Int. Rev. Exp. Pathol. 1980;22:228–251. [Abstract] [Google Scholar]
  • Tartakoff A.M. Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell. 1983;32:1026–1028. [Abstract] [Google Scholar]
  • Tartakoff A.M., Vassalli P. Plasma cell immunoglobulin secretion. Arrest is accompanied by alterations in the Golgi complex. J. Exp. Med. 1977;146:1332–1345. [Europe PMC free article] [Abstract] [Google Scholar]
  • Tartakoff A.M., Vassalli P. Lectin binding sites as markers of Golgi subcompartments: Proximal to distal maturation of oligosaccharides. J. Cell Biol. 1983;97:1243–1248. [Europe PMC free article] [Abstract] [Google Scholar]
  • Tkacz J.S., Lampen J.O. Wall replication in Saccharomyces species: use of fluorescein-conjugated concanavalin A to reveal the site of mannan insertion. J. Gen. Microbiol. 1972;72:243–247. [Abstract] [Google Scholar]
  • Tomita M., Marchesi V.T. Aminoacid sequence and oligosaccharide attachment sites of human erythrocyte glycophorin. Proc. Natl. Acad. Sci. U.S.A. 1975;72:2964–2968. [Europe PMC free article] [Abstract] [Google Scholar]
  • Tycko B., Maxfield F.R. Rapid acidification of endocytic vesicles containing alpha-2 macroglobulin. Cell. 1982;28:643–651. [Abstract] [Google Scholar]
  • Van Golde L.M.G., Raben J., Batenburg J.J., Fleischer B., Zambrano F., Fleischer S. Biosynthesis of lipids in Golgi complex and other subcellular fractions from rat liver. Biochim. Biophys. Acta. 1974;360:179–192. [Abstract] [Google Scholar]
  • Varghese J.N., Laver W.G., Colman P.M. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution. Nature (London) 1983;303:35–40. [Abstract] [Google Scholar]
  • Varki A., Kornfeld S. Identification of a rat liver N-acetylglucosaminyl phosphodiesterase capable of removing “blocking” N-acetylglucosamine residues from phosphorylated high mannose oligosaccharides of lysosomal enzymes. J. Biol. Chem. 1980;255:8398–8401. [Abstract] [Google Scholar]
  • Vasalli P., Tedghi R., Lisowska-Bernstein B., Tartakoff A., Jaton J.-C. Evidence for hydrophobic region within heavy chains of mouse B lymphocyte membrane-bound IgM. Proc. Natl. Acad. Sci. U.S.A. 1979;76:5515–5519. [Europe PMC free article] [Abstract] [Google Scholar]
  • Verkleij A.J., Zwaal R.F.A., Roelofsen B., Comfurius P., Kastelijn D., van Deenen L.L.M. The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim. Biophys. Acta. 1973;323:178–193. [Abstract] [Google Scholar]
  • Von Figura K., Rey M., Printz R., Voss B., Ullrich K. Effect of tunicamycin on transport of lysosomal enzymes in cultured skin fibroblasts. Eur. J. Biochem. 1979;101:103–109. [Abstract] [Google Scholar]
  • Wall D.A., Wilson G., Hubbard A.L. The galactose-specific recognition system of mammalian liver: The route of ligand intemalization in rat hepatocytes. Cell. 1980;21:79–93. [Abstract] [Google Scholar]
  • Walter P., Blobel G. Purification of a membrane associated protein complex required for protein translocation across the endoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 1980;77:7112–7116. [Europe PMC free article] [Abstract] [Google Scholar]
  • Walter P., Blobel G. Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in vitro assembled polysomes synthesizing secretory protein. J. Cell Biol. 1981;91:551–556. [Europe PMC free article] [Abstract] [Google Scholar]
  • Walter P., Blobel G. Translocation of proteins across the endoplasmic reticulum. 111. Signal recognition protein (SRP) causes signal sequence dependent and site specific arrest of chain elongation that is released by microsomal membranes. J. Cell Biol. 1981;91:557–561. [Europe PMC free article] [Abstract] [Google Scholar]
  • Walter P., Blobel G. Signal recognition particle contains a 7s RNA essential for protein translocation across the endoplasmic reticulum. Nature (London) 1982;299:691–698. [Abstract] [Google Scholar]
  • Walter P., Ibrahimi I., Blobel G. Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in vitro assembled polysomes synthesizing secretory proteins. J. Cell Biol. 1981;91:545–550. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ward C.W., Dopheide T.A. Primary structure of the Hong Kong (H3) hemagglutinin. Br. Med. Bull. 1979;35:51–56. [Abstract] [Google Scholar]
  • Waterfield M.D., Espelie K., Elder K., Skehel J.J. Structure of the hemagglutinin of influenza virus. Br. Med. Bull. 1979;35:57–73. [Abstract] [Google Scholar]
  • Wehland J., Willingham M.C., Gallo M.G., Pastan I. The morphologic pathway of exocytosis of the vesicular stomatitis virus G protein in cultured fibroblasts. Cell. 1982;28:831–841. [Abstract] [Google Scholar]
  • Whaley W.G., Dauwalder M. The Golgi apparatus, the plasma membrane and functional integration. Int. Rev. Cytol. 1979;58:199–245. [Abstract] [Google Scholar]
  • White J., Keelian M., Helenius A. Membrane fusion proteins of enveloped viruses. Q. Rev. Biophys. 1983;16:151–195. [Abstract] [Google Scholar]
  • Wilson I.A., Skehel J.J., Wiley D.C. Structure of the hemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature (London) 1981;289:366–373. [Abstract] [Google Scholar]
  • Winter G., Fields S., Brownlee G.G. Nucleotide sequence of the hemagglutinin gene of a human influenza virus HI subtype. Nature (London) 1981;292:72–75. [Abstract] [Google Scholar]
  • Yost S.C., Hedgpeth J., Lingappa V.R. A stop transfer sequence confers predictable orientation to a previously secreted protein in cell free systems. Cell. 1983;34:759–766. [Abstract] [Google Scholar]
  • Young R.W. The role of Golgi complex in sulfate metabolism. J. Cell Biol. 1973;57:175–189. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ziomek C.A., Schulman S., Edidin M. Redistribution of membrane proteins in isolated mouse intestinal cells. J. Cell Biol. 1980;86:849–857. [Europe PMC free article] [Abstract] [Google Scholar]
  • Zuniga M.C., Malissen B., McMillan M., Brayton P.R., Clark S.S., Forman J., Hood L. Expression and function of transplantation antigens with altered or deleted cytoplasmic domains. Cell. 1983;34:535–544. [Abstract] [Google Scholar]

Citations & impact 


Impact metrics

Jump to Citations

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1016/s0070-2161(08)60328-7

Supporting
Mentioning
Contrasting
0
5
0

Article citations

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.