Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Introduction

Urolift® is a surgical modality to treat lower urinary tract symptoms (LUTS) in patients with enlarged prostates (1). However, the inflammatory process caused by the device usually displaces the prostate's anatomical landmarks and challenges surgeons performing robotic-assisted radical prostatectomy (RARP). In this video, we will illustrate several technical challenges in patients with Urolift ® who underwent RARP.

Material and methods

We performed a video compilation with several surgical steps illustrating key aspects and critical details of the anterior bladder neck access, lateral bladder dissection from the prostate, and posterior prostate dissection to avoid ureteral and neural bundles injuries.

Results

We perform our RARP technique with our standard approach in all patients (2-6). The beginning of the case is performed like every patient with an enlarged prostate. We first identify the anterior bladder neck and then complete its dissection with Maryland and Scissors. However, extra care must be taken in the anterior and posterior bladder neck approach due to the clips found during the dissection. The challenge starts when opening the lateral sides of the bladder until the base of the prostate. It is crucial to perform the bladder neck dissection beginning at the internal plane of the bladder wall. Such dissection is the easiest way to recognize the anatomical landmarks and potential foreign materials, such as clips, placed during previous surgeries. We cautiously work around the clip to avoid using cautery on the top of the metal clips because energy is transmitted from one edge to the other of the Urolift ®. This can be dangerous if the edge of the clip is close to the ureteral orifices. The clips are usually removed to minimize cautery conduction energy. Finally, after isolating and removing the clips, the prostate dissection and subsequent surgical steps are continued with our conventional technique. Before proceeding, we ensure that all clips are removed from the bladder neck to avoid complications during the anastomosis.

Conclusions

Robotic-assisted radical prostatectomy in patients with Urolift ® is challenging due to modified anatomical landmarks and intense inflammatory processes in the posterior bladder neck. When dissecting the clips placed next to the base of the prostate, it is crucial to avoid cautery because energy conduction to the other edge of the Urolift ® can cause thermal damage to the ureters and neural bundles.

Free full text 


Logo of ibjuINTERNATIONAL BRAZ J UROLJournal InformationEditorial BoardOn line SubmissionContentsVideo Section
Int Braz J Urol. 2023 May-Jun; 49(3): 391–392.
PMCID: PMC10335883
PMID: 36794847

Technical and anatomical challenges to approach robotic-assisted radical prostatectomy in patients with Urolift®

ABSTRACT

Introduction

Urolift® is a surgical modality to treat lower urinary tract symptoms (LUTS) in patients with enlarged prostates (1). However, the inflammatory process caused by the device usually displaces the prostate’s anatomical landmarks and challenges surgeons performing robotic-assisted radical prostatectomy (RARP). In this video, we will illustrate several technical challenges in patients with Urolift ® who underwent RARP.

Material and Methods

We performed a video compilation with several surgical steps illustrating key aspects and critical details of the anterior bladder neck access, lateral bladder dissection from the prostate, and posterior prostate dissection to avoid ureteral and neural bundles injuries.

Results

We perform our RARP technique with our standard approach in all patients (2 -6). The beginning of the case is performed like every patient with an enlarged prostate. We first identify the anterior bladder neck and then complete its dissection with Maryland and Scissors. However, extra care must be taken in the anterior and posterior bladder neck approach due to the clips found during the dissection. The challenge starts when opening the lateral sides of the bladder until the base of the prostate. It is crucial to perform the bladder neck dissection beginning at the internal plane of the bladder wall. Such dissection is the easiest way to recognize the anatomical landmarks and potential foreign materials, such as clips, placed during previous surgeries. We cautiously work around the clip to avoid using cautery on the top of the metal clips because energy is transmitted from one edge to the other of the Urolift ®. This can be dangerous if the edge of the clip is close to the ureteral orifices. The clips are usually removed to minimize cautery conduction energy. Finally, after isolating and removing the clips, the prostate dissection and subsequent surgical steps are continued with our conventional technique. Before proceeding, we ensure that all clips are removed from the bladder neck to avoid complications during the anastomosis.

Conclusions

Robotic-assisted radical prostatectomy in patients with Urolift ® is challenging due to modified anatomical landmarks and intense inflammatory processes in the posterior bladder neck. When dissecting the clips placed next to the base of the prostate, it is crucial to avoid cautery because energy conduction to the other edge of the Urolift ® can cause thermal damage to the ureters and neural bundles.

REFERENCES

1. Bilhim T, Betschart P, Lyatoshinsky P, Müllhaupt G, Abt D. Minimally Invasive Therapies for Benign Prostatic Obstruction: A Review of Currently Available Techniques Including Prostatic Artery Embolization, Water Vapor Thermal Therapy, Prostatic Urethral Lift, Temporary Implantable Nitinol Device and Aquablation. Cardiovasc Intervent Radiol. 2022;45:415–424. [Abstract] [Google Scholar]
2. Moschovas MC, Patel V. Neurovascular bundle preservation in robotic-assisted radical prostatectomy: How I do it after 15.000 cases. Int Braz J Urol. 2022;48:212–219. [Europe PMC free article] [Abstract] [Google Scholar]
3. Moschovas MC, Patel V. Nerve-sparing robotic-assisted radical prostatectomy: how I do it after 15.000 cases. Int Braz J Urol. 2022;48:369–370. [Europe PMC free article] [Abstract] [Google Scholar]
4. Moschovas MC, Menon M, Noël J, Patel V. Robotic Urologic Surgery. Springer International Publishing; 2022. pp. 165–170. [Google Scholar]
5. Covas Moschovas M, Bhat S, Onol FF, Rogers T, Roof S, Mazzone E, et al. Modified Apical Dissection and Lateral Prostatic Fascia Preservation Improves Early Postoperative Functional Recovery in Robotic-assisted Laparoscopic Radical Prostatectomy: Results from a Propensity Score-matched Analysis. Eur Urol. 2020;78:875–884. [Abstract] [Google Scholar]
6. Basourakos SP, Kowalczyk K, Moschovas MC, Dudley V, Hung AJ, Shoag JE, et al. Robot-Assisted Radical Prostatectomy Maneuvers to Attenuate Erectile Dysfunction: Technical Description and Video Compilation. J Endourol. 2021;35:1601–1609. [Europe PMC free article] [Abstract] [Google Scholar]

Articles from International Brazilian Journal of Urology : Official Journal of the Brazilian Society of Urology are provided here courtesy of Brazilian Society of Urology

Citations & impact 


Impact metrics

Jump to Citations

Alternative metrics

Altmetric item for https://www.altmetric.com/details/142801590
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/142801590

Article citations

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.