Abstract
Free full text
Requirement for membrane potential in injection of phage T4 DNA.
Abstract
The first stages of infection by phage T4 may be divided into energy-dependent and energy-independent processes. Irreversible adsorption, unplugging, and initial exposure of the DNA terminus may occur at 4 degrees C, or at 37 degrees C in bacteria whose energy-yielding metabolism has been poisoned. DNA injection into the cytoplasm needs higher temperatures and energy from the host cell. The nature of this energy requirements was deduced from the use of metabolic inhibitors. Our results show that T4 DNA injection specifically requires the presence of a protonmotive force across the cytoplasmic membrane of the host. Moreover, the chemical gradient (delta pH) does not appear to be essential, but the membrane potential (delta psi) is required.
Full text
Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1001K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Strauss N. Early energy-dependent step in the entry of transforming deoxyribonucleic acid. J Bacteriol. 1970 Jan;101(1):35–37. [Europe PMC free article] [Abstract] [Google Scholar]
- Grinius L, Berzinskiene J. Studies on DNA transport during bacterial conjugation. Role of protonmotive force-generating H+-ATPase and respiratory chain. FEBS Lett. 1976 Dec 15;72(1):151–154. [Abstract] [Google Scholar]
- Crawford JT, Goldberg EB. The effect of baseplate mutations on the requirement for tail-fiber binding for irreversible adsorption of bacteriophage T4. J Mol Biol. 1977 Apr 15;111(3):305–313. [Abstract] [Google Scholar]
- Dharmalingam K, Goldberg EB. Mechanism localisation and control of restriction cleavage of phage T4 and lambda chromosomes in vivo. Nature. 1976 Apr 1;260(5550):406–410. [Abstract] [Google Scholar]
- Zárybnický V. Mechanism of T-even DNA ejection. J Theor Biol. 1969 Jan;22(1):33–42. [Abstract] [Google Scholar]
- Hendrix RW. Symmetry mismatch and DNA packaging in large bacteriophages. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4779–4783. [Europe PMC free article] [Abstract] [Google Scholar]
- Grinius LL. Khemiosmoticheskii mekhanizm transporta biologicheskikh makromolekul cherez membrany bakterii. Biokhimiia. 1976 Sep;41(9):1539–1547. [Abstract] [Google Scholar]
- Kalasauskaite E, Grinius L. The role of energy-yielding ATPase and respiratory chain at early stages of bacteriophage T4 infection. FEBS Lett. 1979 Mar 15;99(2):287–291. [Abstract] [Google Scholar]
- Plate CA, Suit JL, Jetten AM, Luria SE. Effects of colicin K on a mutant of Escherichia coli deficient in Ca 2+, Mg 2+-activated adenosine triphosphatase. J Biol Chem. 1974 Oct 10;249(19):6138–6143. [Abstract] [Google Scholar]
- Silverstein JL, Goldberg EB. T4 DNA injection. II. Protection of entering DNA from host exonuclease V. Virology. 1976 Jul 1;72(1):212–223. [Abstract] [Google Scholar]
- Wais AC, Goldberg EB. Growth and transformation of phage T4 in Escherichia coli B-4, Salmonella, Aerobacter, Proteus, and Serratia. Virology. 1969 Oct;39(2):153–161. [Abstract] [Google Scholar]
- Plate CA. Requirement for membrane potential in active transport of glutamine by Escherichia coli. J Bacteriol. 1979 Jan;137(1):221–225. [Europe PMC free article] [Abstract] [Google Scholar]
- Labedan B. A very early step in the T5 DNA injection process. Virology. 1976 Dec;75(2):368–375. [Abstract] [Google Scholar]
- HERSHEY AD, CHASE M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol. 1952 May;36(1):39–56. [Europe PMC free article] [Abstract] [Google Scholar]
- Oliver DB, Goldberg EB. Protection of parental T4 DNA from a restriction exonuclease by the product of gene 2. J Mol Biol. 1977 Nov;116(4):877–881. [Abstract] [Google Scholar]
- Pudek MR, Bragg PD. Reaction of cyanide with cytochrome d in respiratory particles from exponential phase Escherichia coli. FEBS Lett. 1975 Feb 1;50(2):111–113. [Abstract] [Google Scholar]
- Harold FM. Conservation and transformation of energy by bacterial membranes. Bacteriol Rev. 1972 Jun;36(2):172–230. [Europe PMC free article] [Abstract] [Google Scholar]
- Kaback HR, Reeves JP, Short SA, Lombardi FJ. Mechanisms of active transport in isolated bacterial membrane vesicles. 18. The mechanism of action of carbonylcyanide m-chlorophenylhydrazone. Arch Biochem Biophys. 1974 Jan;160(1):215–222. [Abstract] [Google Scholar]
- Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445–502. [Abstract] [Google Scholar]
- Renthal R, Lanyi JK. Light-induced membrane potential and pH gradient in Halobacterium halobium envelope vesicles. Biochemistry. 1976 May 18;15(10):2136–2143. [Abstract] [Google Scholar]
- Rinehart CA, Hubbard JS. Energy coupling in the active transport of proline and glutamate by the photosynthetic halophile Ectothiorhodospira halophila. J Bacteriol. 1976 Sep;127(3):1255–1264. [Europe PMC free article] [Abstract] [Google Scholar]
- Weiss MJ, Luria SE. Reduction of membrane potential, an immediate effect of colicin K. Proc Natl Acad Sci U S A. 1978 May;75(5):2483–2487. [Europe PMC free article] [Abstract] [Google Scholar]
- Ramos S, Kaback HR. The electrochemical proton gradient in Escherichia coli membrane vesicles. Biochemistry. 1977 Mar 8;16(5):848–854. [Abstract] [Google Scholar]
- Toro M, Gómez-Lojero C, Montal M, Estrada-O S. Charge transfer mediated by nigericin in black lipid membranes. J Bioenerg. 1976 Feb;8(1):19–26. [Abstract] [Google Scholar]
- Zilberstein D, Schuldiner S, Padan E. Proton electrochemical gradient in Escherichia coli cells and its relation to active transport of lactose. Biochemistry. 1979 Feb 20;18(4):669–673. [Abstract] [Google Scholar]
- Simon LD, Anderson TF. The infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope. I. Attachment and penetration. Virology. 1967 Jun;32(2):279–297. [Abstract] [Google Scholar]
- Wilson JH, Luftig RB, Wood WB. Interaction of bacteriophage T4 tail fiber components with a lipopolysaccharide fraction from Escherichia coli. J Mol Biol. 1970 Jul 28;51(2):423–434. [Abstract] [Google Scholar]
- Hancock RW, Braun V. Nature of the energy requirement for the irreversible adsorption of bacteriophages T1 and phi80 to Escherichia coli. J Bacteriol. 1976 Feb;125(2):409–415. [Europe PMC free article] [Abstract] [Google Scholar]
- CHRISTENSEN JR, TOLMACH LJ. On the early stages of infection of Escherichia coli B by bacteriophage T1. Arch Biochem Biophys. 1955 Jul;57(1):195–207. [Abstract] [Google Scholar]
- Klein WL, Boyer PD. Energization of active transport by Escherichia coli. J Biol Chem. 1972 Nov 25;247(22):7257–7265. [Abstract] [Google Scholar]
- Jazwinski SM, Lindberg AA, Kornberg A. The gene H spike protein of bacteriophages phiX174 and S13. I. Functions in phage-receptor recognition and in transfection. Virology. 1975 Jul;66(1):283–293. [Abstract] [Google Scholar]
- Israel V. E proteins of bacteriophage P22. I. Identification and ejection from wild-type and defective particles. J Virol. 1977 Jul;23(1):91–97. [Europe PMC free article] [Abstract] [Google Scholar]
- Marco R, Jazwinski SM, Kornberg A. Binding, eclipse, and penetration of the filamentous bacteriophage M13 in intact and disrupted cells. Virology. 1974 Nov;62(1):209–223. [Abstract] [Google Scholar]
- Leipold B, Hofschneider PH. Isolation of an infectious RNA-A-protein complex from the bacteriophage M12. FEBS Lett. 1975 Jul 15;55(1):50–52. [Abstract] [Google Scholar]
- Hirokawa H. Transfecting deoxyribonucleic acid of Bacillus bacteriophage phi 29 that is protease sensitive. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1555–1559. [Europe PMC free article] [Abstract] [Google Scholar]
- Ortin J, Viñuela E, Salas M, Vasquez C. DNA-protein complex in circular DNA from phage phi-29. Nat New Biol. 1971 Dec 29;234(52):275–277. [Abstract] [Google Scholar]
Associated Data
Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences
Full text links
Read article at publisher's site: https://doi.org/10.1073/pnas.76.9.4669
Read article for free, from open access legal sources, via Unpaywall: http://www.pnas.org/content/76/9/4669.full.pdf
Citations & impact
Impact metrics
Citations of article over time
Smart citations by scite.ai
Explore citation contexts and check if this article has been
supported or disputed.
https://scite.ai/reports/10.1073/pnas.76.9.4669
Article citations
Is biofilm formation intrinsic to the origin of life?
Environ Microbiol, 25(1):26-39, 07 Sep 2022
Cited by: 6 articles | PMID: 36655713 | PMCID: PMC10086821
MDR Pumps as Crossroads of Resistance: Antibiotics and Bacteriophages.
Antibiotics (Basel), 11(6):734, 30 May 2022
Cited by: 12 articles | PMID: 35740141 | PMCID: PMC9220107
Review Free full text in Europe PMC
Decoupling Filamentous Phage Uptake and Energy of the TolQRA Motor in Escherichia coli.
J Bacteriol, 202(2):e00428-19, 02 Jan 2020
Cited by: 5 articles | PMID: 31636109 | PMCID: PMC6941534
Vibrio cholerae Outer Membrane Vesicles Inhibit Bacteriophage Infection.
J Bacteriol, 200(15):e00792-17, 10 Jul 2018
Cited by: 84 articles | PMID: 29661863 | PMCID: PMC6040182
Combined Effects of Elevated pCO2 and Warming Facilitate Cyanophage Infections.
Front Microbiol, 8:1096, 13 Jun 2017
Cited by: 4 articles | PMID: 28659906 | PMCID: PMC5468398
Go to all (48) article citations
Similar Articles
To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.
DNA injection during bacteriophage T4 infection of Escherichia coli.
J Bacteriol, 154(2):938-945, 01 May 1983
Cited by: 24 articles | PMID: 6341365 | PMCID: PMC217548
Studies on energy supply for genetic processes. Requirement for membrane potential in Escherichia coli infection by phage T4.
Eur J Biochem, 130(1):123-130, 01 Jan 1983
Cited by: 27 articles | PMID: 6337841
[Formation of ion channels in the Escherichia coli cytoplasmic membrane after exposure to bacteriophages T4 and lambda].
Biokhimiia, 52(7):1059-1067, 01 Jul 1987
Cited by: 1 article | PMID: 2444271
Involvement of ion channels in the transport of phage DNA through the cytoplasmic membrane of E. coli.
Biochimie, 71(1):167-174, 01 Jan 1989
Cited by: 13 articles | PMID: 2470417
Review