Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Ultraviolet (UV)-induced phage lysates, from lactose-positive (lac(+)) Streptococcus lactis C2, transduced lactose fermenting ability to lac(-) recipient cells of this organism. Although the phage titer could not be determined due to the absence of an appropriate indicator strain, the number of transductants was proportional to the amount of phage lysate added. Treatment of the lysate with deoxyribonuclease had no effect on this conversion, indicating the observed genetic change was not mediated by free deoxyribonucleic acid. When the lac(+) transductants were isolated and exposed to UV irradiation, lysates with higher transducing ability were obtained. The transducing ability of this lysate was about 100-fold higher than that observed in the original lysates. The lac(+) transductants were unstable since lac(-) segregants occurred at high frequency. The phage lysate from S. lactis C2 also transduced maltose and mannose metabolism to the respective negative recipient cells. The results demonstrate the transduction of carbohydrate markers by a streptococcal phage and establish a genetic transfer system in group N streptococci.

Free full text 


Logo of jbacterLink to Publisher's site
J Bacteriol. 1973 Sep; 115(3): 810–815.
PMCID: PMC246325
PMID: 4199514

Transduction of Lactose Metabolism in Streptococcus lactis C21

Abstract

Ultraviolet (UV)-induced phage lysates, from lactose-positive (lac+) Streptococcus lactis C2, transduced lactose fermenting ability to lac recipient cells of this organism. Although the phage titer could not be determined due to the absence of an appropriate indicator strain, the number of transductants was proportional to the amount of phage lysate added. Treatment of the lysate with deoxyribonuclease had no effect on this conversion, indicating the observed genetic change was not mediated by free deoxyribonucleic acid. When the lac+ transductants were isolated and exposed to UV irradiation, lysates with higher transducing ability were obtained. The transducing ability of this lysate was about 100-fold higher than that observed in the original lysates. The lac+ transductants were unstable since lac segregants occurred at high frequency. The phage lysate from S. lactis C2 also transduced maltose and mannose metabolism to the respective negative recipient cells. The results demonstrate the transduction of carbohydrate markers by a streptococcal phage and establish a genetic transfer system in group N streptococci.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (891K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Article citations


Go to all (39) article citations