Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The steady-state levels of p53 protein and p53 mRNA in transformed and nontransformed cells were examined to elucidate the mechanisms controlling expression of p53. mRNA levels were determined by Northern blot hybridization analysis, employing a p53-specific cDNA clone (M. Oren and A.J. Levine, Proc. Natl. Acad. Sci. U.S.A. 80:56-59, 1983), and protein levels were determined by the Western blotting technique. Analysis of p53 mRNA revealed a single polyadenylated mRNA species migrating at ca. 18S. Levels of p53 mRNA in simian virus 40-transformed cell line (SVT2) and in an homologous nontransformed cell line (3T3) were equivalent, although the steady-state levels of p53 protein were 25- to 100-fold higher in the SVT2 cells than in the 3T3 cells. A study with a non-virus-transformed cell system revealed a different result. Embryonal carcinoma cells (F9) were found to have nearly 20-fold higher levels of p53 mRNA in comparison with differentiated benign progeny cells. In this system the difference in p53 mRNA levels corresponded to the difference in p53 protein levels. Pulse-chase experiments were performed to study the half-life of p53 protein in these four types of cells. The turnover of p53 protein occurred with biphasic kinetics. In addition, it was found that protein synthesis inhibitors placed in the medium during the chase period prevented the turnover of p53 protein in transformed cells, but not in nontransformed (3T3) cells. These results provide evidence that the regulation of p53 expression in cells can occur at the level of p53 mRNA abundancy or p53 protein stability depending upon the experimental system under study, and that a regulated degradation process controls the turnover of p53 protein.

Free full text 


Logo of molcellbLink to Publisher's site
Mol Cell Biol. 1983 Dec; 3(12): 2143–2150.
PMCID: PMC370084
PMID: 6318085

Two distinct mechanisms regulate the levels of a cellular tumor antigen, p53.

Abstract

The steady-state levels of p53 protein and p53 mRNA in transformed and nontransformed cells were examined to elucidate the mechanisms controlling expression of p53. mRNA levels were determined by Northern blot hybridization analysis, employing a p53-specific cDNA clone (M. Oren and A.J. Levine, Proc. Natl. Acad. Sci. U.S.A. 80:56-59, 1983), and protein levels were determined by the Western blotting technique. Analysis of p53 mRNA revealed a single polyadenylated mRNA species migrating at ca. 18S. Levels of p53 mRNA in simian virus 40-transformed cell line (SVT2) and in an homologous nontransformed cell line (3T3) were equivalent, although the steady-state levels of p53 protein were 25- to 100-fold higher in the SVT2 cells than in the 3T3 cells. A study with a non-virus-transformed cell system revealed a different result. Embryonal carcinoma cells (F9) were found to have nearly 20-fold higher levels of p53 mRNA in comparison with differentiated benign progeny cells. In this system the difference in p53 mRNA levels corresponded to the difference in p53 protein levels. Pulse-chase experiments were performed to study the half-life of p53 protein in these four types of cells. The turnover of p53 protein occurred with biphasic kinetics. In addition, it was found that protein synthesis inhibitors placed in the medium during the chase period prevented the turnover of p53 protein in transformed cells, but not in nontransformed (3T3) cells. These results provide evidence that the regulation of p53 expression in cells can occur at the level of p53 mRNA abundancy or p53 protein stability depending upon the experimental system under study, and that a regulated degradation process controls the turnover of p53 protein.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aaronson SA, Todaro GJ. Development of 3T3-like lines from Balb-c mouse embryo cultures: transformation susceptibility to SV40. J Cell Physiol. 1968 Oct;72(2):141–148. [Abstract] [Google Scholar]
  • Benchimol S, Pim D, Crawford L. Radioimmunoassay of the cellular protein p53 in mouse and human cell lines. EMBO J. 1982;1(9):1055–1062. [Europe PMC free article] [Abstract] [Google Scholar]
  • Burnette WN. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. [Abstract] [Google Scholar]
  • Crawford LV, Pim DC, Gurney EG, Goodfellow P, Taylor-Papadimitriou J. Detection of a common feature in several human tumor cell lines--a 53,000-dalton protein. Proc Natl Acad Sci U S A. 1981 Jan;78(1):41–45. [Europe PMC free article] [Abstract] [Google Scholar]
  • DeLeo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A. 1979 May;76(5):2420–2424. [Europe PMC free article] [Abstract] [Google Scholar]
  • Goldberg DA. Isolation and partial characterization of the Drosophila alcohol dehydrogenase gene. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5794–5798. [Europe PMC free article] [Abstract] [Google Scholar]
  • Gurney EG, Harrison RO, Fenno J. Monoclonal antibodies against simian virus 40 T antigens: evidence for distinct sublcasses of large T antigen and for similarities among nonviral T antigens. J Virol. 1980 Jun;34(3):752–763. [Europe PMC free article] [Abstract] [Google Scholar]
  • Harlow E, Crawford LV, Pim DC, Williamson NM. Monoclonal antibodies specific for simian virus 40 tumor antigens. J Virol. 1981 Sep;39(3):861–869. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hershko A, Ciechanover A. Mechanisms of intracellular protein breakdown. Annu Rev Biochem. 1982;51:335–364. [Abstract] [Google Scholar]
  • Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature. 1979 Mar 15;278(5701):261–263. [Abstract] [Google Scholar]
  • Lehrach H, Diamond D, Wozney JM, Boedtker H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 1977 Oct 18;16(21):4743–4751. [Abstract] [Google Scholar]
  • Linzer DI, Levine AJ. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell. 1979 May;17(1):43–52. [Abstract] [Google Scholar]
  • Linzer DI, Maltzman W, Levine AJ. The SV40 A gene product is required for the production of a 54,000 MW cellular tumor antigen. Virology. 1979 Oct 30;98(2):308–318. [Abstract] [Google Scholar]
  • Milner J, Milner S. SV40-53K antigen: a possible role for 53K in normal cells. Virology. 1981 Jul 30;112(2):785–788. [Abstract] [Google Scholar]
  • Oren M, Levine AJ. Molecular cloning of a cDNA specific for the murine p53 cellular tumor antigen. Proc Natl Acad Sci U S A. 1983 Jan;80(1):56–59. [Europe PMC free article] [Abstract] [Google Scholar]
  • Oren M, Maltzman W, Levine AJ. Post-translational regulation of the 54K cellular tumor antigen in normal and transformed cells. Mol Cell Biol. 1981 Feb;1(2):101–110. [Europe PMC free article] [Abstract] [Google Scholar]
  • Rotter V, Boss MA, Baltimore D. Increased concentration of an apparently identical cellular protein in cells transformed by either Abelson murine leukemia virus or other transforming agents. J Virol. 1981 Apr;38(1):336–346. [Europe PMC free article] [Abstract] [Google Scholar]
  • Sarnow P, Ho YS, Williams J, Levine AJ. Adenovirus E1b-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells. Cell. 1982 Feb;28(2):387–394. [Abstract] [Google Scholar]
  • Strickland S, Smith KK, Marotti KR. Hormonal induction of differentiation in teratocarcinoma stem cells: generation of parietal endoderm by retinoic acid and dibutyryl cAMP. Cell. 1980 Sep;21(2):347–355. [Abstract] [Google Scholar]
  • Thomas PS. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. [Europe PMC free article] [Abstract] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Article citations


Go to all (196) article citations

Funding 


Funders who supported this work.

NCI NIH HHS (1)