Abstract
Free full text
Mode of action of SDZ NIM 811, a nonimmunosuppressive cyclosporin A analog with activity against human immunodeficiency virus (HIV) type 1: interference with HIV protein-cyclophilin A interactions.
Abstract
Cyclosporins, in particular the nonimmunosuppressive derivative SDZ NIM 811, exhibit potent anti-human immunodeficiency virus type 1 (HIV-1) activity in vitro. SDZ NIM 811 interferes at two stages of the viral replication cycle: (i) translocation of the preintegration complex to the nucleus and (ii) production of infectious virus particles. Immunosuppressive activity is not correlated with anti-HIV-1 activity of cyclosporins. However, binding to cyclophilin A, the major cellular receptor protein of cyclosporins, is a prerequisite for HIV inhibition: all structural changes of the cyclosporin A molecule leading to loss of affinity to cyclophilin abolished the antiviral effect. Cyclosporin derivatives did not interact directly with HIV-1 proteins; cyclophilin was the only detectable receptor protein for antivirally active cyclosporins. There is no evidence that inhibition of HIV occurs via a gain of function of cyclophilin in the presence of cyclosporins: the complex of cyclophilin A with SDZ NIM 811 does not bind to calcineurin or to any other viral or cellular proteins under conditions in which calcineurin binding to the cyclophilin A-cyclosporin A complex is easily detectable. Thus, the loss of function caused by binding of cyclosporins to cyclophilin seems to be sufficient for the anti-HIV effect. Cyclophilin A was demonstrated to bind to HIV-1 p24gag, and the formation of complexes was blocked by cyclosporins with 50% inhibitory concentrations of about 0.7 microM. HIV-2 and simian immunodeficiency virus are only weakly or not at all inhibited by cyclosporins. For gag-encoded proteins derived from HIV-1, HIV-2, or simian immunodeficiency virus particles, cyclophilin-binding capacity correlated with sensitivity of the viruses to inhibition by cyclosporins. Cyclophilin A also binds to HIV-1 proteins other than gag-encoded proteins, namely, p17gag, Nef, Vif, and gp120env; the biological significance of these interactions is questionable. We conclude that HIV-1 Gag-cyclophilin A interaction may be essential in HIV-1 replication, and interference with this interaction may be the molecular basis for the antiviral activity of cyclosporins.
Full Text
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrieu JM, Even P, Venet A. AIDS and related syndromes as a viral-induced autoimmune disease of the immune system: an anti-MHC II disorder. Therapeutic implications. AIDS Res. 1986 Summer;2(3):163–174. [Abstract] [Google Scholar]
- Baumann G, Zenke G, Wenger R, Hiestand P, Quesniaux V, Andersen E, Schreier MH. Molecular mechanisms of immunosuppression. J Autoimmun. 1992 Apr;5 (Suppl A):67–72. [Abstract] [Google Scholar]
- Billich A, Hammerschmid F, Winkler G. Purification, assay and kinetic features of HIV-1 proteinase. Biol Chem Hoppe Seyler. 1990 Mar;371(3):265–272. [Abstract] [Google Scholar]
- Blanc D, Patience C, Schulz TF, Weiss R, Spire B. Transcomplementation of VIF- HIV-1 mutants in CEM cells suggests that VIF affects late steps of the viral life cycle. Virology. 1993 Mar;193(1):186–192. [Abstract] [Google Scholar]
- Bukrinsky MI, Sharova N, Dempsey MP, Stanwick TL, Bukrinskaya AG, Haggerty S, Stevenson M. Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6580–6584. [Europe PMC free article] [Abstract] [Google Scholar]
- Clavel F, Guyader M, Guétard D, Sallé M, Montagnier L, Alizon M. Molecular cloning and polymorphism of the human immune deficiency virus type 2. Nature. 1986 Dec 18;324(6098):691–695. [Abstract] [Google Scholar]
- Daniel MD, Letvin NL, King NW, Kannagi M, Sehgal PK, Hunt RD, Kanki PJ, Essex M, Desrosiers RC. Isolation of T-cell tropic HTLV-III-like retrovirus from macaques. Science. 1985 Jun 7;228(4704):1201–1204. [Abstract] [Google Scholar]
- Davis JM, Boswell BA, Bächinger HP. Thermal stability and folding of type IV procollagen and effect of peptidyl-prolyl cis-trans-isomerase on the folding of the triple helix. J Biol Chem. 1989 May 25;264(15):8956–8962. [Abstract] [Google Scholar]
- De Clercq E, Yamamoto N, Pauwels R, Balzarini J, Witvrouw M, De Vreese K, Debyser Z, Rosenwirth B, Peichl P, Datema R, et al. Highly potent and selective inhibition of human immunodeficiency virus by the bicyclam derivative JM3100. Antimicrob Agents Chemother. 1994 Apr;38(4):668–674. [Europe PMC free article] [Abstract] [Google Scholar]
- Fischer G, Bang H, Mech C. Nachweis einer Enzymkatalyse für die cis-trans-Isomerisierung der Peptidbindung in prolinhaltigen Peptiden. Biomed Biochim Acta. 1984;43(10):1101–1111. [Abstract] [Google Scholar]
- Foxwell BM, Mackie A, Ling V, Ryffel B. Identification of the multidrug resistance-related P-glycoprotein as a cyclosporine binding protein. Mol Pharmacol. 1989 Oct;36(4):543–546. [Abstract] [Google Scholar]
- Fransson C, Freskgård PO, Herbertsson H, Johansson A, Jonasson P, Mårtensson LG, Svensson M, Jonsson BH, Carlsson U. Cis-trans isomerization is rate-determining in the reactivation of denatured human carbonic anhydrase II as evidenced by proline isomerase. FEBS Lett. 1992 Jan 13;296(1):90–94. [Abstract] [Google Scholar]
- Gabuzda DH, Lawrence K, Langhoff E, Terwilliger E, Dorfman T, Haseltine WA, Sodroski J. Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J Virol. 1992 Nov;66(11):6489–6495. [Europe PMC free article] [Abstract] [Google Scholar]
- Groux H, Torpier G, Monté D, Mouton Y, Capron A, Ameisen JC. Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. J Exp Med. 1992 Feb 1;175(2):331–340. [Europe PMC free article] [Abstract] [Google Scholar]
- Habeshaw JA, Dalgleish AG. The relevance of HIV env/CD4 interactions to the pathogenesis of acquired immune deficiency syndrome. J Acquir Immune Defic Syndr. 1989;2(5):457–468. [Abstract] [Google Scholar]
- Hammerschmid F, Maier E, Rosenwirth B. Measurement of HIV-1 reverse transcriptase by a nonradioactive assay system. Ann N Y Acad Sci. 1992 Nov 30;672:252–256. [Abstract] [Google Scholar]
- Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW. Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science. 1984 Nov 2;226(4674):544–547. [Abstract] [Google Scholar]
- Hoffmann GW, Kion TA, Grant MD. An idiotypic network model of AIDS immunopathogenesis. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3060–3064. [Europe PMC free article] [Abstract] [Google Scholar]
- Kanki PJ, Essex M. Simian T-lymphotropic viruses and related human viruses. Vet Microbiol. 1988 Jul;17(3):309–314. [Abstract] [Google Scholar]
- Klasse PJ, Schulz TF, Willison KR. HIV. Cyclophilins unfold the Gag? Nature. 1993 Sep 30;365(6445):395–396. [Abstract] [Google Scholar]
- Lang K, Schmid FX, Fischer G. Catalysis of protein folding by prolyl isomerase. Nature. 1987 Sep 17;329(6136):268–270. [Abstract] [Google Scholar]
- Liu J, Farmer JD, Jr, Lane WS, Friedman J, Weissman I, Schreiber SL. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991 Aug 23;66(4):807–815. [Abstract] [Google Scholar]
- Luban J, Bossolt KL, Franke EK, Kalpana GV, Goff SP. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell. 1993 Jun 18;73(6):1067–1078. [Abstract] [Google Scholar]
- Luban J, Goff SP. Binding of human immunodeficiency virus type 1 (HIV-1) RNA to recombinant HIV-1 gag polyprotein. J Virol. 1991 Jun;65(6):3203–3212. [Europe PMC free article] [Abstract] [Google Scholar]
- Maurer G, Loosli HR, Schreier E, Keller B. Disposition of cyclosporine in several animal species and man. I. Structural elucidation of its metabolites. Drug Metab Dispos. 1984 Jan-Feb;12(1):120–126. [Abstract] [Google Scholar]
- McNew JA, Sykes K, Goodman JM. Specific cross-linking of the proline isomerase cyclophilin to a non-proline-containing peptide. Mol Biol Cell. 1993 Feb;4(2):223–232. [Europe PMC free article] [Abstract] [Google Scholar]
- Miyoshi I, Kubonishi I, Yoshimoto S, Akagi T, Ohtsuki Y, Shiraishi Y, Nagata K, Hinuma Y. Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic T cells. Nature. 1981 Dec 24;294(5843):770–771. [Abstract] [Google Scholar]
- Pauwels R, Balzarini J, Baba M, Snoeck R, Schols D, Herdewijn P, Desmyter J, De Clercq E. Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J Virol Methods. 1988 Aug;20(4):309–321. [Abstract] [Google Scholar]
- Popovic M, Sarngadharan MG, Read E, Gallo RC. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science. 1984 May 4;224(4648):497–500. [Abstract] [Google Scholar]
- Quesniaux VF, Schreier MH, Wenger RM, Hiestand PC, Harding MW, Van Regenmortel MH. Cyclophilin binds to the region of cyclosporine involved in its immunosuppressive activity. Eur J Immunol. 1987 Sep;17(9):1359–1365. [Abstract] [Google Scholar]
- Rey MA, Krust B, Laurent AG, Guétard D, Montagnier L, Hovanessian AG. Characterization of an HIV-2-related virus with a smaller sized extracellular envelope glycoprotein. Virology. 1989 Nov;173(1):258–267. [Abstract] [Google Scholar]
- Rosenwirth B, Billich A, Datema R, Donatsch P, Hammerschmid F, Harrison R, Hiestand P, Jaksche H, Mayer P, Peichl P, et al. Inhibition of human immunodeficiency virus type 1 replication by SDZ NIM 811, a nonimmunosuppressive cyclosporine analog. Antimicrob Agents Chemother. 1994 Aug;38(8):1763–1772. [Europe PMC free article] [Abstract] [Google Scholar]
- el Rouby S, Shi Y, Reem GH. Comparison of the properties of the CsA analogs monoacetyl CyC (o-acetyl-threonine2 cyclosporin) and methyl-alanyl CsA (N-methyl-L-alanyl6 cyclosporin); monoacetyl cyclosporin is immunosuppressive without binding to cyclophilin. Clin Exp Immunol. 1992 Jul;89(1):136–142. [Abstract] [Google Scholar]
- Ryffel B. Cyclosporin binding proteins. Identification, distribution, function and relation to FK binding proteins. Biochem Pharmacol. 1993 Jul 6;46(1):1–12. [Abstract] [Google Scholar]
- Sakai H, Shibata R, Sakuragi J, Sakuragi S, Kawamura M, Adachi A. Cell-dependent requirement of human immunodeficiency virus type 1 Vif protein for maturation of virus particles. J Virol. 1993 Mar;67(3):1663–1666. [Europe PMC free article] [Abstract] [Google Scholar]
- Scholz D, Billich A, Charpiot B, Ettmayer P, Lehr P, Rosenwirth B, Schreiner E, Gstach H. Inhibitors of HIV-1 proteinase containing 2-heterosubstituted 4-amino-3-hydroxy-5-phenylpentanoic acid: synthesis, enzyme inhibition, and antiviral activity. J Med Chem. 1994 Sep 16;37(19):3079–3089. [Abstract] [Google Scholar]
- Steinkasserer A, Harrison R, Billich A, Hammerschmid F, Werner G, Wolff B, Peichl P, Palfi G, Schnitzel W, Mlynar E, et al. Mode of action of SDZ NIM 811, a nonimmunosuppressive cyclosporin A analog with activity against human immunodeficiency virus type 1 (HIV-1): interference with early and late events in HIV-1 replication. J Virol. 1995 Feb;69(2):814–824. [Europe PMC free article] [Abstract] [Google Scholar]
- Stevenson M, Stanwick TL, Dempsey MP, Lamonica CA. HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J. 1990 May;9(5):1551–1560. [Europe PMC free article] [Abstract] [Google Scholar]
- Stricker RB, McHugh TM, Moody DJ, Morrow WJ, Stites DP, Shuman MA, Levy JA. An AIDS-related cytotoxic autoantibody reacts with a specific antigen on stimulated CD4+ T cells. Nature. 327(6124):710–713. [Abstract] [Google Scholar]
- Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. [Abstract] [Google Scholar]
- Thali M, Bukovsky A, Kondo E, Rosenwirth B, Walsh CT, Sodroski J, Göttlinger HG. Functional association of cyclophilin A with HIV-1 virions. Nature. 1994 Nov 24;372(6504):363–365. [Abstract] [Google Scholar]
- von Schwedler U, Song J, Aiken C, Trono D. Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J Virol. 1993 Aug;67(8):4945–4955. [Europe PMC free article] [Abstract] [Google Scholar]
- Wainberg MA, Dascal A, Blain N, Fitz-Gibbon L, Boulerice F, Numazaki K, Tremblay M. The effect of cyclosporine A on infection of susceptible cells by human immunodeficiency virus type 1. Blood. 1988 Dec;72(6):1904–1910. [Abstract] [Google Scholar]
- Walsh CT, Zydowsky LD, McKeon FD. Cyclosporin A, the cyclophilin class of peptidylprolyl isomerases, and blockade of T cell signal transduction. J Biol Chem. 1992 Jul 5;267(19):13115–13118. [Abstract] [Google Scholar]
- Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell. 1990 Apr 20;61(2):213–222. [Abstract] [Google Scholar]
- Zagury D, Bernard J, Leonard R, Cheynier R, Feldman M, Sarin PS, Gallo RC. Long-term cultures of HTLV-III--infected T cells: a model of cytopathology of T-cell depletion in AIDS. Science. 1986 Feb 21;231(4740):850–853. [Abstract] [Google Scholar]
Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)
Full text links
Read article at publisher's site: https://doi.org/10.1128/jvi.69.4.2451-2461.1995
Read article for free, from open access legal sources, via Unpaywall: https://jvi.asm.org/content/jvi/69/4/2451.full.pdf
Free after 4 months at jvi.asm.org
http://jvi.asm.org/cgi/reprint/69/4/2451
Free to read at jvi.asm.org
http://jvi.asm.org/cgi/content/abstract/69/4/2451
Citations & impact
Impact metrics
Article citations
Cyclophilin inhibition as a strategy for the treatment of human disease.
Front Pharmacol, 15:1417945, 08 Jul 2024
Cited by: 0 articles | PMID: 39045055 | PMCID: PMC11264201
Review Free full text in Europe PMC
Inhibitors of Cyclophilin A: Current and Anticipated Pharmaceutical Agents for Inflammatory Diseases and Cancers.
Molecules, 29(6):1235, 11 Mar 2024
Cited by: 0 articles | PMID: 38542872 | PMCID: PMC10974348
Review Free full text in Europe PMC
Emerging role of cyclophilin A in HIV-1 infection: from producer cell to the target cell nucleus.
J Virol, 97(11):e0073223, 16 Oct 2023
Cited by: 4 articles | PMID: 37843371 | PMCID: PMC10688351
Review Free full text in Europe PMC
Features of Congenital Arthrogryposis Due to Abnormalities in Collagen Homeostasis, a Scoping Review.
Int J Mol Sci, 24(17):13545, 31 Aug 2023
Cited by: 0 articles | PMID: 37686358 | PMCID: PMC10487887
Review Free full text in Europe PMC
Preparing for the next viral threat with broad-spectrum antivirals.
J Clin Invest, 133(11):e170236, 01 Jun 2023
Cited by: 7 articles | PMID: 37259914 | PMCID: PMC10232003
Review Free full text in Europe PMC
Go to all (109) article citations
Similar Articles
To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.
The human immunodeficiency virus type 1 capsid p2 domain confers sensitivity to the cyclophilin-binding drug SDZ NIM 811.
J Virol, 70(9):5751-5757, 01 Sep 1996
Cited by: 66 articles | PMID: 8709190 | PMCID: PMC190588
Mode of action of SDZ NIM 811, a nonimmunosuppressive cyclosporin A analog with activity against human immunodeficiency virus type 1 (HIV-1): interference with early and late events in HIV-1 replication.
J Virol, 69(2):814-824, 01 Feb 1995
Cited by: 58 articles | PMID: 7815548 | PMCID: PMC188647
Inhibition of human immunodeficiency virus type 1 replication by SDZ NIM 811, a nonimmunosuppressive cyclosporine analog.
Antimicrob Agents Chemother, 38(8):1763-1772, 01 Aug 1994
Cited by: 110 articles | PMID: 7527198 | PMCID: PMC284634
Molecular mechanisms of immunosuppression by cyclosporins.
Ann N Y Acad Sci, 685:330-335, 01 Jun 1993
Cited by: 21 articles | PMID: 7689806
Review