Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Type 4 fimbriae are surface filaments produced by a range of bacterial pathogens for colonization of host epithelial surfaces. In Pseudomonas aeruginosa, they are involved in adhesion as well as in a form of surface translocation called twitching motility, and sensitivity to infection by fimbria-specific bacteriophage. Analysis of the 2.5-kb intergenic region between the previously defined pilR and pilV genes on P. aeruginosa genomic SpeI fragment E has identified three new genes, fimT, fimU, and dadA*. The predicted 18.5-kDa products of the fimT and fimU genes contain prepilin-like leader sequences, whereas the third gene, dadA*, encodes a protein similar to the D-amino acid dehydrogenase of Escherichia coli. Isogenic mutants constructed by allelic exchange demonstrated that the fimU gene was required for fimbrial biogenesis and twitching motility, whereas the fimT and dada* mutants retained wild-type phenotypes. However, overexpression of the fimT gene was found to be able to functionally replace the lack of a fimU gene product, suggesting a subtle role in fimbrial biogenesis. The identification of these proteins increases the similarity between type 4 fimbrial biogenesis and the supersystems involved in macromolecular traffic, such as extracellular protein secretion and DNA uptake, all of which now possess multiple protein species that possess prepilin-like leader sequences.

Free full text 


Logo of jbacterLink to Publisher's site
J Bacteriol. 1996 Jul; 178(13): 3809–3817.
PMCID: PMC232641
PMID: 8682785

Identification of two genes with prepilin-like leader sequences involved in type 4 fimbrial biogenesis in Pseudomonas aeruginosa.

Abstract

Type 4 fimbriae are surface filaments produced by a range of bacterial pathogens for colonization of host epithelial surfaces. In Pseudomonas aeruginosa, they are involved in adhesion as well as in a form of surface translocation called twitching motility, and sensitivity to infection by fimbria-specific bacteriophage. Analysis of the 2.5-kb intergenic region between the previously defined pilR and pilV genes on P. aeruginosa genomic SpeI fragment E has identified three new genes, fimT, fimU, and dadA*. The predicted 18.5-kDa products of the fimT and fimU genes contain prepilin-like leader sequences, whereas the third gene, dadA*, encodes a protein similar to the D-amino acid dehydrogenase of Escherichia coli. Isogenic mutants constructed by allelic exchange demonstrated that the fimU gene was required for fimbrial biogenesis and twitching motility, whereas the fimT and dada* mutants retained wild-type phenotypes. However, overexpression of the fimT gene was found to be able to functionally replace the lack of a fimU gene product, suggesting a subtle role in fimbrial biogenesis. The identification of these proteins increases the similarity between type 4 fimbrial biogenesis and the supersystems involved in macromolecular traffic, such as extracellular protein secretion and DNA uptake, all of which now possess multiple protein species that possess prepilin-like leader sequences.

Full Text

The Full Text of this article is available as a PDF (676K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Alm RA, Bodero AJ, Free PD, Mattick JS. Identification of a novel gene, pilZ, essential for type 4 fimbrial biogenesis in Pseudomonas aeruginosa. J Bacteriol. 1996 Jan;178(1):46–53. [Europe PMC free article] [Abstract] [Google Scholar]
  • Alm RA, Mattick JS. Identification of a gene, pilV, required for type 4 fimbrial biogenesis in Pseudomonas aeruginosa, whose product possesses a pre-pilin-like leader sequence. Mol Microbiol. 1995 May;16(3):485–496. [Abstract] [Google Scholar]
  • Bally M, Filloux A, Akrim M, Ball G, Lazdunski A, Tommassen J. Protein secretion in Pseudomonas aeruginosa: characterization of seven xcp genes and processing of secretory apparatus components by prepilin peptidase. Mol Microbiol. 1992 May;6(9):1121–1131. [Abstract] [Google Scholar]
  • Bradley DE. A pilus-dependent Pseudomonas aeruginosa bacteriophage with a long noncontractile tail. Virology. 1973 Feb;51(2):489–492. [Abstract] [Google Scholar]
  • Bradley DE. A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. Can J Microbiol. 1980 Feb;26(2):146–154. [Abstract] [Google Scholar]
  • Brunschwig E, Darzins A. A two-component T7 system for the overexpression of genes in Pseudomonas aeruginosa. Gene. 1992 Feb 1;111(1):35–41. [Abstract] [Google Scholar]
  • Dalrymple B, Mattick JS. An analysis of the organization and evolution of type 4 fimbrial (MePhe) subunit proteins. J Mol Evol. 1987;25(3):261–269. [Abstract] [Google Scholar]
  • Darzins A. The pilG gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric, single-domain response regulator CheY. J Bacteriol. 1993 Sep;175(18):5934–5944. [Europe PMC free article] [Abstract] [Google Scholar]
  • Darzins A. Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biosynthesis and twitching motility: sequence similarity to the chemotaxis proteins of enterics and the gliding bacterium Myxococcus xanthus. Mol Microbiol. 1994 Jan;11(1):137–153. [Abstract] [Google Scholar]
  • Darzins A. The Pseudomonas aeruginosa pilK gene encodes a chemotactic methyltransferase (CheR) homologue that is translationally regulated. Mol Microbiol. 1995 Feb;15(4):703–717. [Abstract] [Google Scholar]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [Europe PMC free article] [Abstract] [Google Scholar]
  • Donnenberg MS, Girón JA, Nataro JP, Kaper JB. A plasmid-encoded type IV fimbrial gene of enteropathogenic Escherichia coli associated with localized adherence. Mol Microbiol. 1992 Nov;6(22):3427–3437. [Abstract] [Google Scholar]
  • Dums F, Dow JM, Daniels MJ. Structural characterization of protein secretion genes of the bacterial phytopathogen Xanthomonas campestris pathovar campestris: relatedness to secretion systems of other gram-negative bacteria. Mol Gen Genet. 1991 Oct;229(3):357–364. [Abstract] [Google Scholar]
  • Engvall E, Perlmann P. Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J Immunol. 1972 Jul;109(1):129–135. [Abstract] [Google Scholar]
  • Faast R, Ogierman MA, Stroeher UH, Manning PA. Nucleotide sequence of the structural gene, tcpA, for a major pilin subunit of Vibrio cholerae. Gene. 1989 Dec 21;85(1):227–231. [Abstract] [Google Scholar]
  • Farinha MA, Conway BD, Glasier LM, Ellert NW, Irvin RT, Sherburne R, Paranchych W. Alteration of the pilin adhesin of Pseudomonas aeruginosa PAO results in normal pilus biogenesis but a loss of adherence to human pneumocyte cells and decreased virulence in mice. Infect Immun. 1994 Oct;62(10):4118–4123. [Europe PMC free article] [Abstract] [Google Scholar]
  • Farinha MA, Ronald SL, Kropinski AM, Paranchych W. Localization of the virulence-associated genes pilA, pilR, rpoN, fliA, fliC, ent, and fbp on the physical map of Pseudomonas aeruginosa PAO1 by pulsed-field electrophoresis. Infect Immun. 1993 Apr;61(4):1571–1575. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hancock RE, Nikaido H. Outer membranes of gram-negative bacteria. XIX. Isolation from Pseudomonas aeruginosa PAO1 and use in reconstitution and definition of the permeability barrier. J Bacteriol. 1978 Oct;136(1):381–390. [Europe PMC free article] [Abstract] [Google Scholar]
  • He SY, Lindeberg M, Chatterjee AK, Collmer A. Cloned Erwinia chrysanthemi out genes enable Escherichia coli to selectively secrete a diverse family of heterologous proteins to its milieu. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):1079–1083. [Europe PMC free article] [Abstract] [Google Scholar]
  • Henrichsen J. Twitching motility. Annu Rev Microbiol. 1983;37:81–93. [Abstract] [Google Scholar]
  • Hobbs M, Collie ES, Free PD, Livingston SP, Mattick JS. PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol. 1993 Mar;7(5):669–682. [Abstract] [Google Scholar]
  • Hobbs M, Dalrymple B, Delaney SF, Mattick JS. Transcription of the fimbrial subunit gene and an associated transfer RNA gene of Pseudomonas aeruginosa. Gene. 1988;62(2):219–227. [Abstract] [Google Scholar]
  • Hobbs M, Mattick JS. Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol Microbiol. 1993 Oct;10(2):233–243. [Abstract] [Google Scholar]
  • Hoshino T, Kageyama M. Purification and properties of a binding protein for branched-chain amino acids in Pseudomonas aeruginosa. J Bacteriol. 1980 Mar;141(3):1055–1063. [Europe PMC free article] [Abstract] [Google Scholar]
  • Howard SP, Critch J, Bedi A. Isolation and analysis of eight exe genes and their involvement in extracellular protein secretion and outer membrane assembly in Aeromonas hydrophila. J Bacteriol. 1993 Oct;175(20):6695–6703. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ishimoto KS, Lory S. Formation of pilin in Pseudomonas aeruginosa requires the alternative sigma factor (RpoN) of RNA polymerase. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1954–1957. [Europe PMC free article] [Abstract] [Google Scholar]
  • Jonson G, Lebens M, Holmgren J. Cloning and sequencing of Vibrio cholerae mannose-sensitive haemagglutinin pilin gene: localization of mshA within a cluster of type 4 pilin genes. Mol Microbiol. 1994 Jul;13(1):109–118. [Abstract] [Google Scholar]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [Abstract] [Google Scholar]
  • Lee KK, Sheth HB, Wong WY, Sherburne R, Paranchych W, Hodges RS, Lingwood CA, Krivan H, Irvin RT. The binding of Pseudomonas aeruginosa pili to glycosphingolipids is a tip-associated event involving the C-terminal region of the structural pilin subunit. Mol Microbiol. 1994 Feb;11(4):705–713. [Abstract] [Google Scholar]
  • Lindeberg M, Collmer A. Analysis of eight out genes in a cluster required for pectic enzyme secretion by Erwinia chrysanthemi: sequence comparison with secretion genes from other gram-negative bacteria. J Bacteriol. 1992 Nov;174(22):7385–7397. [Europe PMC free article] [Abstract] [Google Scholar]
  • Martin PR, Hobbs M, Free PD, Jeske Y, Mattick JS. Characterization of pilQ, a new gene required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol. 1993 Aug;9(4):857–868. [Abstract] [Google Scholar]
  • Martin PR, Watson AA, McCaul TF, Mattick JS. Characterization of a five-gene cluster required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol. 1995 May;16(3):497–508. [Abstract] [Google Scholar]
  • McMichael JC. Bacterial differentiation within Moraxella bovis colonies growing at the interface of the agar medium with the Petri dish. J Gen Microbiol. 1992 Dec;138(12):2687–2695. [Abstract] [Google Scholar]
  • Mongkolsuk S, Vattanaviboon P, Rabibhadana S, Kiatpapan P. Versatile gene cassette plasmids to facilitate the construction of generalized and specialized cloning vectors. Gene. 1993 Feb 14;124(1):131–132. [Abstract] [Google Scholar]
  • Nunn D, Bergman S, Lory S. Products of three accessory genes, pilB, pilC, and pilD, are required for biogenesis of Pseudomonas aeruginosa pili. J Bacteriol. 1990 Jun;172(6):2911–2919. [Europe PMC free article] [Abstract] [Google Scholar]
  • Nunn DN, Lory S. Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3281–3285. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ottow JC. Ecology, physiology, and genetics of fimbriae and pili. Annu Rev Microbiol. 1975;29:79–108. [Abstract] [Google Scholar]
  • Overbye LJ, Sandkvist M, Bagdasarian M. Genes required for extracellular secretion of enterotoxin are clustered in Vibrio cholerae. Gene. 1993 Sep 30;132(1):101–106. [Abstract] [Google Scholar]
  • Pugsley AP. The complete general secretory pathway in gram-negative bacteria. Microbiol Rev. 1993 Mar;57(1):50–108. [Europe PMC free article] [Abstract] [Google Scholar]
  • Reyss I, Pugsley AP. Five additional genes in the pulC-O operon of the gram-negative bacterium Klebsiella oxytoca UNF5023 which are required for pullulanase secretion. Mol Gen Genet. 1990 Jul;222(2-3):176–184. [Abstract] [Google Scholar]
  • Roncero C, Darzins A, Casadaban MJ. Pseudomonas aeruginosa transposable bacteriophages D3112 and B3 require pili and surface growth for adsorption. J Bacteriol. 1990 Apr;172(4):1899–1904. [Europe PMC free article] [Abstract] [Google Scholar]
  • Russell MA, Darzins A. The pilE gene product of Pseudomonas aeruginosa, required for pilus biogenesis, shares amino acid sequence identity with the N-termini of type 4 prepilin proteins. Mol Microbiol. 1994 Sep;13(6):973–985. [Abstract] [Google Scholar]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [Europe PMC free article] [Abstract] [Google Scholar]
  • Schweizer HP. Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. Gene. 1991 Jan 2;97(1):109–121. [Abstract] [Google Scholar]
  • Schweizer HP. Allelic exchange in Pseudomonas aeruginosa using novel ColE1-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker. Mol Microbiol. 1992 May;6(9):1195–1204. [Abstract] [Google Scholar]
  • Strom MS, Lory S. Amino acid substitutions in pilin of Pseudomonas aeruginosa. Effect on leader peptide cleavage, amino-terminal methylation, and pilus assembly. J Biol Chem. 1991 Jan 25;266(3):1656–1664. [Abstract] [Google Scholar]
  • Strom MS, Nunn DN, Lory S. A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2404–2408. [Europe PMC free article] [Abstract] [Google Scholar]
  • Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. [Europe PMC free article] [Abstract] [Google Scholar]
  • Vieira J, Messing J. New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene. 1991 Apr;100:189–194. [Abstract] [Google Scholar]
  • West SE, Iglewski BH. Codon usage in Pseudomonas aeruginosa. Nucleic Acids Res. 1988 Oct 11;16(19):9323–9335. [Europe PMC free article] [Abstract] [Google Scholar]
  • Whitchurch CB, Hobbs M, Livingston SP, Krishnapillai V, Mattick JS. Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria. Gene. 1991 May 15;101(1):33–44. [Abstract] [Google Scholar]
  • Whitchurch CB, Mattick JS. Characterization of a gene, pilU, required for twitching motility but not phage sensitivity in Pseudomonas aeruginosa. Mol Microbiol. 1994 Sep;13(6):1079–1091. [Abstract] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Article citations


Go to all (62) article citations

Data 


Data behind the article

This data has been text mined from the article, or deposited into data resources.