Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Activated T lymphocytes are present in human atherosclerotic lesions and autoantibodies to antigens within lesions have been detected in serum, but the roles of the cellular and humoral immune systems in atherogenesis have not been determined. The effect of total lymphocyte deficiency on atherogenesis was investigated by crossing apo E-deficient mice (which develop atherosclerosis resembling human disease) with mice deficient in RAG2 (which is required for normal B and T lymphocyte development). Mice were placed on a fat- and cholesterol-enriched diet for 12 wk. RAG2-deficient mice had no serum autoantibodies, in contrast to the high titers in RAG2+/- littermates. There were no T lymphocytes and a markedly reduced number of MHC class II-positive macrophages in atherosclerotic lesions of RAG2-deficient mice. Despite these differences, RAG2-deficient mice developed atherosclerosis similar in extent to that in immunocompetent littermates, based on quantification by two independent methods. In conclusion, the absence of autoantibodies and T lymphocytes did not influence the extent of aortic atherosclerotic lesions in apo E-deficient mice.

Free full text 


Logo of jcinvestThe Journal of Clinical Investigation
J Clin Invest. 1997 Sep 15; 100(6): 1575–1580.
PMCID: PMC508339
PMID: 9294126

The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E-/- mice.

Abstract

Activated T lymphocytes are present in human atherosclerotic lesions and autoantibodies to antigens within lesions have been detected in serum, but the roles of the cellular and humoral immune systems in atherogenesis have not been determined. The effect of total lymphocyte deficiency on atherogenesis was investigated by crossing apo E-deficient mice (which develop atherosclerosis resembling human disease) with mice deficient in RAG2 (which is required for normal B and T lymphocyte development). Mice were placed on a fat- and cholesterol-enriched diet for 12 wk. RAG2-deficient mice had no serum autoantibodies, in contrast to the high titers in RAG2+/- littermates. There were no T lymphocytes and a markedly reduced number of MHC class II-positive macrophages in atherosclerotic lesions of RAG2-deficient mice. Despite these differences, RAG2-deficient mice developed atherosclerosis similar in extent to that in immunocompetent littermates, based on quantification by two independent methods. In conclusion, the absence of autoantibodies and T lymphocytes did not influence the extent of aortic atherosclerotic lesions in apo E-deficient mice.

Full Text

The Full Text of this article is available as a PDF (289K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Shi C, Lee WS, He Q, Zhang D, Fletcher DL, Jr, Newell JB, Haber E. Immunologic basis of transplant-associated arteriosclerosis. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4051–4056. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hansson GK, Holm J, Holm S, Fotev Z, Hedrich HJ, Fingerle J. T lymphocytes inhibit the vascular response to injury. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10530–10534. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hansson GK, Holm J. Interferon-gamma inhibits arterial stenosis after injury. Circulation. 1991 Sep;84(3):1266–1272. [Abstract] [Google Scholar]
  • Libby P, Hansson GK. Involvement of the immune system in human atherogenesis: current knowledge and unanswered questions. Lab Invest. 1991 Jan;64(1):5–15. [Abstract] [Google Scholar]
  • Emeson EE, Robertson AL., Jr T lymphocytes in aortic and coronary intimas. Their potential role in atherogenesis. Am J Pathol. 1988 Feb;130(2):369–376. [Europe PMC free article] [Abstract] [Google Scholar]
  • Shimokama T, Haraoka S, Watanabe T. Immunohistochemical and ultrastructural demonstration of the lymphocyte-macrophage interaction in human aortic intima. Mod Pathol. 1991 Jan;4(1):101–107. [Abstract] [Google Scholar]
  • Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis. 1986 Mar-Apr;6(2):131–138. [Abstract] [Google Scholar]
  • Hansson GK, Jonasson L, Lojsthed B, Stemme S, Kocher O, Gabbiani G. Localization of T lymphocytes and macrophages in fibrous and complicated human atherosclerotic plaques. Atherosclerosis. 1988 Aug;72(2-3):135–141. [Abstract] [Google Scholar]
  • Stemme S, Rymo L, Hansson GK. Polyclonal origin of T lymphocytes in human atherosclerotic plaques. Lab Invest. 1991 Dec;65(6):654–660. [Abstract] [Google Scholar]
  • Swanson SJ, Rosenzweig A, Seidman JG, Libby P. Diversity of T-cell antigen receptor V beta gene utilization in advanced human atheroma. Arterioscler Thromb. 1994 Jul;14(7):1210–1214. [Abstract] [Google Scholar]
  • Hansson GK, Holm J, Jonasson L. Detection of activated T lymphocytes in the human atherosclerotic plaque. Am J Pathol. 1989 Jul;135(1):169–175. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kishikawa H, Shimokama T, Watanabe T. Localization of T lymphocytes and macrophages expressing IL-1, IL-2 receptor, IL-6 and TNF in human aortic intima. Role of cell-mediated immunity in human atherogenesis. Virchows Arch A Pathol Anat Histopathol. 1993;423(6):433–442. [Abstract] [Google Scholar]
  • Rolfe BE, Campbell JH, Smith NJ, Cheong MW, Campbell GR. T lymphocytes affect smooth muscle cell phenotype and proliferation. Arterioscler Thromb Vasc Biol. 1995 Aug;15(8):1204–1210. [Abstract] [Google Scholar]
  • Xu Q, Willeit J, Marosi M, Kleindienst R, Oberhollenzer F, Kiechl S, Stulnig T, Luef G, Wick G. Association of serum antibodies to heat-shock protein 65 with carotid atherosclerosis. Lancet. 1993 Jan 30;341(8840):255–259. [Abstract] [Google Scholar]
  • Salonen JT, Ylä-Herttuala S, Yamamoto R, Butler S, Korpela H, Salonen R, Nyyssönen K, Palinski W, Witztum JL. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet. 1992 Apr 11;339(8798):883–887. [Abstract] [Google Scholar]
  • Kiener PA, Rankin BM, Davis PM, Yocum SA, Warr GA, Grove RI. Immune complexes of LDL induce atherogenic responses in human monocytic cells. Arterioscler Thromb Vasc Biol. 1995 Jul;15(7):990–999. [Abstract] [Google Scholar]
  • Ylä-Herttuala S, Palinski W, Butler SW, Picard S, Steinberg D, Witztum JL. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler Thromb. 1994 Jan;14(1):32–40. [Abstract] [Google Scholar]
  • Emeson EE, Shen ML. Accelerated atherosclerosis in hyperlipidemic C57BL/6 mice treated with cyclosporin A. Am J Pathol. 1993 Jun;142(6):1906–1915. [Europe PMC free article] [Abstract] [Google Scholar]
  • Roselaar SE, Schonfeld G, Daugherty A. Enhanced development of atherosclerosis in cholesterol-fed rabbits by suppression of cell-mediated immunity. J Clin Invest. 1995 Sep;96(3):1389–1394. [Europe PMC free article] [Abstract] [Google Scholar]
  • Drew AF, Tipping PG. Cyclosporine treatment reduces early atherosclerosis in the cholesterol-fed rabbit. Atherosclerosis. 1995 Aug;116(2):181–189. [Abstract] [Google Scholar]
  • Emeson EE, Shen ML, Bell CG, Qureshi A. Inhibition of atherosclerosis in CD4 T-cell-ablated and nude (nu/nu) C57BL/6 hyperlipidemic mice. Am J Pathol. 1996 Aug;149(2):675–685. [Europe PMC free article] [Abstract] [Google Scholar]
  • Fyfe AI, Qiao JH, Lusis AJ. Immune-deficient mice develop typical atherosclerotic fatty streaks when fed an atherogenic diet. J Clin Invest. 1994 Dec;94(6):2516–2520. [Europe PMC free article] [Abstract] [Google Scholar]
  • Qiao JH, Xie PZ, Fishbein MC, Kreuzer J, Drake TA, Demer LL, Lusis AJ. Pathology of atheromatous lesions in inbred and genetically engineered mice. Genetic determination of arterial calcification. Arterioscler Thromb. 1994 Sep;14(9):1480–1497. [Abstract] [Google Scholar]
  • Zhou X, Stemme S, Hansson GK. Evidence for a local immune response in atherosclerosis. CD4+ T cells infiltrate lesions of apolipoprotein-E-deficient mice. Am J Pathol. 1996 Aug;149(2):359–366. [Europe PMC free article] [Abstract] [Google Scholar]
  • Palinski W, Ord VA, Plump AS, Breslow JL, Steinberg D, Witztum JL. ApoE-deficient mice are a model of lipoprotein oxidation in atherogenesis. Demonstration of oxidation-specific epitopes in lesions and high titers of autoantibodies to malondialdehyde-lysine in serum. Arterioscler Thromb. 1994 Apr;14(4):605–616. [Abstract] [Google Scholar]
  • Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb. 1994 Jan;14(1):133–140. [Abstract] [Google Scholar]
  • Reddick RL, Zhang SH, Maeda N. Atherosclerosis in mice lacking apo E. Evaluation of lesional development and progression. Arterioscler Thromb. 1994 Jan;14(1):141–147. [Abstract] [Google Scholar]
  • Breslow JL. Mouse models of atherosclerosis. Science. 1996 May 3;272(5262):685–688. [Abstract] [Google Scholar]
  • Lichtman AH, Cybulsky M, Luscinskas FW. Immunology of atherosclerosis: the promise of mouse models. Am J Pathol. 1996 Aug;149(2):351–357. [Europe PMC free article] [Abstract] [Google Scholar]
  • Shinkai Y, Rathbun G, Lam KP, Oltz EM, Stewart V, Mendelsohn M, Charron J, Datta M, Young F, Stall AM, et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell. 1992 Mar 6;68(5):855–867. [Abstract] [Google Scholar]
  • Piedrahita JA, Zhang SH, Hagaman JR, Oliver PM, Maeda N. Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4471–4475. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kung JT, Sharrow SO, Sieckmann DG, Lieberman R, Paul WE. A mouse IgM allotypic determinant (Igh-6.5) recognized by a monoclonal rat antibody. J Immunol. 1981 Sep;127(3):873–876. [Abstract] [Google Scholar]
  • Leo O, Foo M, Sachs DH, Samelson LE, Bluestone JA. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1374–1378. [Europe PMC free article] [Abstract] [Google Scholar]
  • Haberland ME, Fogelman AM, Edwards PA. Specificity of receptor-mediated recognition of malondialdehyde-modified low density lipoproteins. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1712–1716. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ishikawa TT, MacGee J, Morrison JA, Glueck CJ. Quantitative analysis of cholesterol in 5 to 20 microliter of plasma. J Lipid Res. 1974 May;15(3):286–291. [Abstract] [Google Scholar]
  • Daugherty A, Zweifel BS, Schonfeld G. The effects of probucol on the progression of atherosclerosis in mature Watanabe heritable hyperlipidaemic rabbits. Br J Pharmacol. 1991 May;103(1):1013–1018. [Europe PMC free article] [Abstract] [Google Scholar]
  • Daugherty A, Roselaar SE. Lipoprotein oxidation as a mediator of atherogenesis: insights from pharmacological studies. Cardiovasc Res. 1995 Mar;29(3):297–311. [Abstract] [Google Scholar]
  • BLIGH EG, DYER WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. [Abstract] [Google Scholar]
  • Plump AS, Smith JD, Hayek T, Aalto-Setälä K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 1992 Oct 16;71(2):343–353. [Abstract] [Google Scholar]
  • Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992 Oct 16;258(5081):468–471. [Abstract] [Google Scholar]
  • Paigen B, Morrow A, Holmes PA, Mitchell D, Williams RA. Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis. 1987 Dec;68(3):231–240. [Abstract] [Google Scholar]
  • Tangirala RK, Rubin EM, Palinski W. Quantitation of atherosclerosis in murine models: correlation between lesions in the aortic origin and in the entire aorta, and differences in the extent of lesions between sexes in LDL receptor-deficient and apolipoprotein E-deficient mice. J Lipid Res. 1995 Nov;36(11):2320–2328. [Abstract] [Google Scholar]
  • Daugherty A, Zweifel BS, Schonfeld G. Probucol attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Br J Pharmacol. 1989 Oct;98(2):612–618. [Europe PMC free article] [Abstract] [Google Scholar]
  • Palinski W, Tangirala RK, Miller E, Young SG, Witztum JL. Increased autoantibody titers against epitopes of oxidized LDL in LDL receptor-deficient mice with increased atherosclerosis. Arterioscler Thromb Vasc Biol. 1995 Oct;15(10):1569–1576. [Abstract] [Google Scholar]
  • Palinski W, Miller E, Witztum JL. Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):821–825. [Europe PMC free article] [Abstract] [Google Scholar]
  • Brand K, Mackman N, Curtiss LK. Interferon-gamma inhibits macrophage apolipoprotein E production by posttranslational mechanisms. J Clin Invest. 1993 May;91(5):2031–2039. [Europe PMC free article] [Abstract] [Google Scholar]
  • Fong LG, Albert TS, Hom SE. Inhibition of the macrophage-induced oxidation of low density lipoprotein by interferon-gamma. J Lipid Res. 1994 May;35(5):893–904. [Abstract] [Google Scholar]
  • Fong LG, Fong TA, Cooper AD. Inhibition of mouse macrophage degradation of acetyl-low density lipoprotein by interferon-gamma. J Biol Chem. 1990 Jul 15;265(20):11751–11760. [Abstract] [Google Scholar]
  • Geng YJ, Hansson GK. Interferon-gamma inhibits scavenger receptor expression and foam cell formation in human monocyte-derived macrophages. J Clin Invest. 1992 Apr;89(4):1322–1330. [Europe PMC free article] [Abstract] [Google Scholar]
  • de Villiers WJ, Fraser IP, Gordon S. Cytokine and growth factor regulation of macrophage scavenger receptor expression and function. Immunol Lett. 1994 Dec;43(1-2):73–79. [Abstract] [Google Scholar]
  • LaMarre J, Wolf BB, Kittler EL, Quesenberry PJ, Gonias SL. Regulation of macrophage alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein by lipopolysaccharide and interferon-gamma. J Clin Invest. 1993 Mar;91(3):1219–1224. [Europe PMC free article] [Abstract] [Google Scholar]
  • Steeg PS, Moore RN, Johnson HM, Oppenheim JJ. Regulation of murine macrophage Ia antigen expression by a lymphokine with immune interferon activity. J Exp Med. 1982 Dec 1;156(6):1780–1793. [Europe PMC free article] [Abstract] [Google Scholar]
  • Stuart PM, Zlotnik A, Woodward JG. Induction of class I and class II MHC antigen expression on murine bone marrow-derived macrophages by IL-4 (B cell stimulatory factor 1). J Immunol. 1988 Mar 1;140(5):1542–1547. [Abstract] [Google Scholar]
  • Dansky HM, Charlton SA, Harper MM, Smith JD. T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4642–4646. [Europe PMC free article] [Abstract] [Google Scholar]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Article citations


Go to all (166) article citations

Data