Abstract
Free full text
Virion incorporation of envelope glycoproteins with long but not short cytoplasmic tails is blocked by specific, single amino acid substitutions in the human immunodeficiency virus type 1 matrix.
Abstract
Incorporation of envelope glycoproteins into a budding retrovirus is an essential step in the formation of an infectious virus particle. By using site-directed mutagenesis, we identified specific amino acid residues in the matrix domain of the human immunodeficiency virus type 1 (HIV-1) Gag protein that are critical to the incorporation of HIV-1 envelope glycoproteins into virus particles. Pseudotyping analyses were used to demonstrate that two heterologous envelope glycoproteins with short cytoplasmic tails (the envelope of the amphotropic murine leukemia virus and a naturally truncated HIV-2 envelope) are efficiently incorporated into HIV-1 particles bearing the matrix mutations. Furthermore, deletion of the cytoplasmic tail of HIV-1 transmembrane envelope glycoprotein gp41 from 150 to 7 or 47 residues reversed the incorporation block imposed by the matrix mutations. These results suggest the existence of a specific functional interaction between the HIV-1 matrix and the gp41 cytoplasmic tail.
Full Text
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brody BA, Rhee SS, Hunter E. Postassembly cleavage of a retroviral glycoprotein cytoplasmic domain removes a necessary incorporation signal and activates fusion activity. J Virol. 1994 Jul;68(7):4620–4627. [Europe PMC free article] [Abstract] [Google Scholar]
- Bryant M, Ratner L. Myristoylation-dependent replication and assembly of human immunodeficiency virus 1. Proc Natl Acad Sci U S A. 1990 Jan;87(2):523–527. [Europe PMC free article] [Abstract] [Google Scholar]
- Bukrinsky MI, Haggerty S, Dempsey MP, Sharova N, Adzhubel A, Spitz L, Lewis P, Goldfarb D, Emerman M, Stevenson M. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature. 1993 Oct 14;365(6447):666–669. [Europe PMC free article] [Abstract] [Google Scholar]
- Chakrabarti L, Emerman M, Tiollais P, Sonigo P. The cytoplasmic domain of simian immunodeficiency virus transmembrane protein modulates infectivity. J Virol. 1989 Oct;63(10):4395–4403. [Europe PMC free article] [Abstract] [Google Scholar]
- Clavel F, Guétard D, Brun-Vézinet F, Chamaret S, Rey MA, Santos-Ferreira MO, Laurent AG, Dauguet C, Katlama C, Rouzioux C, et al. Isolation of a new human retrovirus from West African patients with AIDS. Science. 1986 Jul 18;233(4761):343–346. [Abstract] [Google Scholar]
- Dorfman T, Mammano F, Haseltine WA, Göttlinger HG. Role of the matrix protein in the virion association of the human immunodeficiency virus type 1 envelope glycoprotein. J Virol. 1994 Mar;68(3):1689–1696. [Europe PMC free article] [Abstract] [Google Scholar]
- Dubay JW, Roberts SJ, Hahn BH, Hunter E. Truncation of the human immunodeficiency virus type 1 transmembrane glycoprotein cytoplasmic domain blocks virus infectivity. J Virol. 1992 Nov;66(11):6616–6625. [Europe PMC free article] [Abstract] [Google Scholar]
- Evans LA, Moreau J, Odehouri K, Legg H, Barboza A, Cheng-Mayer C, Levy JA. Characterization of a noncytopathic HIV-2 strain with unusual effects on CD4 expression. Science. 1988 Jun 10;240(4858):1522–1525. [Abstract] [Google Scholar]
- Freed EO, Delwart EL, Buchschacher GL, Jr, Panganiban AT. A mutation in the human immunodeficiency virus type 1 transmembrane glycoprotein gp41 dominantly interferes with fusion and infectivity. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):70–74. [Europe PMC free article] [Abstract] [Google Scholar]
- Freed EO, Martin MA. Evidence for a functional interaction between the V1/V2 and C4 domains of human immunodeficiency virus type 1 envelope glycoprotein gp120. J Virol. 1994 Apr;68(4):2503–2512. [Europe PMC free article] [Abstract] [Google Scholar]
- Freed EO, Myers DJ. Identification and characterization of fusion and processing domains of the human immunodeficiency virus type 2 envelope glycoprotein. J Virol. 1992 Sep;66(9):5472–5478. [Europe PMC free article] [Abstract] [Google Scholar]
- Freed EO, Myers DJ, Risser R. Mutational analysis of the cleavage sequence of the human immunodeficiency virus type 1 envelope glycoprotein precursor gp160. J Virol. 1989 Nov;63(11):4670–4675. [Europe PMC free article] [Abstract] [Google Scholar]
- Freed EO, Orenstein JM, Buckler-White AJ, Martin MA. Single amino acid changes in the human immunodeficiency virus type 1 matrix protein block virus particle production. J Virol. 1994 Aug;68(8):5311–5320. [Europe PMC free article] [Abstract] [Google Scholar]
- Gabuzda DH, Lever A, Terwilliger E, Sodroski J. Effects of deletions in the cytoplasmic domain on biological functions of human immunodeficiency virus type 1 envelope glycoproteins. J Virol. 1992 Jun;66(6):3306–3315. [Europe PMC free article] [Abstract] [Google Scholar]
- Gebhardt A, Bosch JV, Ziemiecki A, Friis RR. Rous sarcoma virus p19 and gp35 can be chemically crosslinked to high molecular weight complexes. An insight into virus assembly. J Mol Biol. 1984 Apr 5;174(2):297–317. [Abstract] [Google Scholar]
- Gelderblom HR. Assembly and morphology of HIV: potential effect of structure on viral function. AIDS. 1991 Jun;5(6):617–637. [Abstract] [Google Scholar]
- Guyader M, Emerman M, Sonigo P, Clavel F, Montagnier L, Alizon M. Genome organization and transactivation of the human immunodeficiency virus type 2. Nature. 1987 Apr 16;326(6114):662–669. [Abstract] [Google Scholar]
- Hahn BH, Kong LI, Lee SW, Kumar P, Taylor ME, Arya SK, Shaw GM. Relation of HTLV-4 to simian and human immunodeficiency-associated viruses. Nature. 1987 Nov 12;330(6144):184–186. [Abstract] [Google Scholar]
- Hirsch VM, Edmondson P, Murphey-Corb M, Arbeille B, Johnson PR, Mullins JI. SIV adaptation to human cells. Nature. 1989 Oct 19;341(6243):573–574. [Abstract] [Google Scholar]
- Hunter E, Hill E, Hardwick M, Bhown A, Schwartz DE, Tizard R. Complete sequence of the Rous sarcoma virus env gene: identification of structural and functional regions of its product. J Virol. 1983 Jun;46(3):920–936. [Europe PMC free article] [Abstract] [Google Scholar]
- Johnston PB, Dubay JW, Hunter E. Truncations of the simian immunodeficiency virus transmembrane protein confer expanded virus host range by removing a block to virus entry into cells. J Virol. 1993 Jun;67(6):3077–3086. [Europe PMC free article] [Abstract] [Google Scholar]
- Kimpton J, Emerman M. Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene. J Virol. 1992 Apr;66(4):2232–2239. [Europe PMC free article] [Abstract] [Google Scholar]
- Kodama T, Wooley DP, Naidu YM, Kestler HW, 3rd, Daniel MD, Li Y, Desrosiers RC. Significance of premature stop codons in env of simian immunodeficiency virus. J Virol. 1989 Nov;63(11):4709–4714. [Europe PMC free article] [Abstract] [Google Scholar]
- Landau NR, Page KA, Littman DR. Pseudotyping with human T-cell leukemia virus type I broadens the human immunodeficiency virus host range. J Virol. 1991 Jan;65(1):162–169. [Europe PMC free article] [Abstract] [Google Scholar]
- Lusso P, di Marzo Veronese F, Ensoli B, Franchini G, Jemma C, DeRocco SE, Kalyanaraman VS, Gallo RC. Expanded HIV-1 cellular tropism by phenotypic mixing with murine endogenous retroviruses. Science. 1990 Feb 16;247(4944):848–852. [Abstract] [Google Scholar]
- Matthews S, Barlow P, Boyd J, Barton G, Russell R, Mills H, Cunningham M, Meyers N, Burns N, Clark N, et al. Structural similarity between the p17 matrix protein of HIV-1 and interferon-gamma. Nature. 1994 Aug 25;370(6491):666–668. [Abstract] [Google Scholar]
- Perez LG, Davis GL, Hunter E. Mutants of the Rous sarcoma virus envelope glycoprotein that lack the transmembrane anchor and cytoplasmic domains: analysis of intracellular transport and assembly into virions. J Virol. 1987 Oct;61(10):2981–2988. [Europe PMC free article] [Abstract] [Google Scholar]
- Pinter A, Honnen WJ. Topography of murine leukemia virus envelope proteins: characterization of transmembrane components. J Virol. 1983 Jun;46(3):1056–1060. [Europe PMC free article] [Abstract] [Google Scholar]
- Rhee SS, Hunter E. A single amino acid substitution within the matrix protein of a type D retrovirus converts its morphogenesis to that of a type C retrovirus. Cell. 1990 Oct 5;63(1):77–86. [Abstract] [Google Scholar]
- Rice NR, Henderson LE, Sowder RC, Copeland TD, Oroszlan S, Edwards JF. Synthesis and processing of the transmembrane envelope protein of equine infectious anemia virus. J Virol. 1990 Aug;64(8):3770–3778. [Europe PMC free article] [Abstract] [Google Scholar]
- Ross EK, Buckler-White AJ, Rabson AB, Englund G, Martin MA. Contribution of NF-kappa B and Sp1 binding motifs to the replicative capacity of human immunodeficiency virus type 1: distinct patterns of viral growth are determined by T-cell types. J Virol. 1991 Aug;65(8):4350–4358. [Europe PMC free article] [Abstract] [Google Scholar]
- Shimizu H, Morikawa S, Yamaguchi K, Tsuchie H, Hachimori K, Ushijima H, Kitamura T. Shorter size of transmembrane glycoprotein of an HIV-1 isolate. AIDS. 1990 Jun;4(6):575–576. [Abstract] [Google Scholar]
- Sonigo P, Barker C, Hunter E, Wain-Hobson S. Nucleotide sequence of Mason-Pfizer monkey virus: an immunosuppressive D-type retrovirus. Cell. 1986 May 9;45(3):375–385. [Abstract] [Google Scholar]
- Spearman P, Wang JJ, Vander Heyden N, Ratner L. Identification of human immunodeficiency virus type 1 Gag protein domains essential to membrane binding and particle assembly. J Virol. 1994 May;68(5):3232–3242. [Europe PMC free article] [Abstract] [Google Scholar]
- Spector DH, Wade E, Wright DA, Koval V, Clark C, Jaquish D, Spector SA. Human immunodeficiency virus pseudotypes with expanded cellular and species tropism. J Virol. 1990 May;64(5):2298–2308. [Europe PMC free article] [Abstract] [Google Scholar]
- Spies CP, Compans RW. Effects of cytoplasmic domain length on cell surface expression and syncytium-forming capacity of the simian immunodeficiency virus envelope glycoprotein. Virology. 1994 Aug 15;203(1):8–19. [Abstract] [Google Scholar]
- Wang CT, Zhang Y, McDermott J, Barklis E. Conditional infectivity of a human immunodeficiency virus matrix domain deletion mutant. J Virol. 1993 Dec;67(12):7067–7076. [Europe PMC free article] [Abstract] [Google Scholar]
- Wilk T, Pfeiffer T, Bosch V. Retained in vitro infectivity and cytopathogenicity of HIV-1 despite truncation of the C-terminal tail of the env gene product. Virology. 1992 Jul;189(1):167–177. [Abstract] [Google Scholar]
- Willey RL, Bonifacino JS, Potts BJ, Martin MA, Klausner RD. Biosynthesis, cleavage, and degradation of the human immunodeficiency virus 1 envelope glycoprotein gp160. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9580–9584. [Europe PMC free article] [Abstract] [Google Scholar]
- Willey RL, Smith DH, Lasky LA, Theodore TS, Earl PL, Moss B, Capon DJ, Martin MA. In vitro mutagenesis identifies a region within the envelope gene of the human immunodeficiency virus that is critical for infectivity. J Virol. 1988 Jan;62(1):139–147. [Europe PMC free article] [Abstract] [Google Scholar]
- Wills JW, Craven RC. Form, function, and use of retroviral gag proteins. AIDS. 1991 Jun;5(6):639–654. [Abstract] [Google Scholar]
- Yu X, Yu QC, Lee TH, Essex M. The C terminus of human immunodeficiency virus type 1 matrix protein is involved in early steps of the virus life cycle. J Virol. 1992 Sep;66(9):5667–5670. [Europe PMC free article] [Abstract] [Google Scholar]
- Yu X, Yuan X, Matsuda Z, Lee TH, Essex M. The matrix protein of human immunodeficiency virus type 1 is required for incorporation of viral envelope protein into mature virions. J Virol. 1992 Aug;66(8):4966–4971. [Europe PMC free article] [Abstract] [Google Scholar]
- Yu X, Yuan X, McLane MF, Lee TH, Essex M. Mutations in the cytoplasmic domain of human immunodeficiency virus type 1 transmembrane protein impair the incorporation of Env proteins into mature virions. J Virol. 1993 Jan;67(1):213–221. [Europe PMC free article] [Abstract] [Google Scholar]
- Yuan X, Yu X, Lee TH, Essex M. Mutations in the N-terminal region of human immunodeficiency virus type 1 matrix protein block intracellular transport of the Gag precursor. J Virol. 1993 Nov;67(11):6387–6394. [Europe PMC free article] [Abstract] [Google Scholar]
- Zagury JF, Franchini G, Reitz M, Collalti E, Starcich B, Hall L, Fargnoli K, Jagodzinski L, Guo HG, Laure F, et al. Genetic variability between isolates of human immunodeficiency virus (HIV) type 2 is comparable to the variability among HIV type 1. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5941–5945. [Europe PMC free article] [Abstract] [Google Scholar]
- Zingler K, Littman DR. Truncation of the cytoplasmic domain of the simian immunodeficiency virus envelope glycoprotein increases env incorporation into particles and fusogenicity and infectivity. J Virol. 1993 May;67(5):2824–2831. [Europe PMC free article] [Abstract] [Google Scholar]
Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)
Full text links
Read article at publisher's site: https://doi.org/10.1128/jvi.69.3.1984-1989.1995
Read article for free, from open access legal sources, via Unpaywall: https://jvi.asm.org/content/jvi/69/3/1984.full.pdf
Free to read at jvi.asm.org
http://jvi.asm.org/cgi/content/abstract/69/3/1984
Free after 4 months at jvi.asm.org
http://jvi.asm.org/cgi/reprint/69/3/1984
Citations & impact
Impact metrics
Citations of article over time
Alternative metrics
Smart citations by scite.ai
Explore citation contexts and check if this article has been
supported or disputed.
https://scite.ai/reports/10.1128/jvi.69.3.1984-1989.1995
Article citations
The Assembly of HTLV-1-How Does It Differ from HIV-1?
Viruses, 16(10):1528, 27 Sep 2024
Cited by: 0 articles | PMID: 39459862 | PMCID: PMC11512237
Review Free full text in Europe PMC
Probing Gag-Env dynamics at HIV-1 assembly sites using live-cell microscopy.
J Virol, 98(9):e0064924, 13 Aug 2024
Cited by: 1 article | PMID: 39136462 | PMCID: PMC11406925
Human Immunodeficiency Virus Type 1 Gag Polyprotein Modulates Membrane Physical Properties like a Surfactant: Potential Implications for Virus Assembly.
ACS Infect Dis, 10(8):2870-2885, 25 Jun 2024
Cited by: 2 articles | PMID: 38917054 | PMCID: PMC11320576
HIV-1 envelope facilitates the development of protease inhibitor resistance through acquiring mutations associated with viral entry and immune escape.
Front Microbiol, 15:1388729, 18 Apr 2024
Cited by: 1 article | PMID: 38699474 | PMCID: PMC11063367
Molecular dynamics simulations of HIV-1 matrix-membrane interactions at different stages of viral maturation.
Biophys J, 123(3):389-406, 09 Jan 2024
Cited by: 2 articles | PMID: 38196190
Go to all (255) article citations
Similar Articles
To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.
Domains of the human immunodeficiency virus type 1 matrix and gp41 cytoplasmic tail required for envelope incorporation into virions.
J Virol, 70(1):341-351, 01 Jan 1996
Cited by: 281 articles | PMID: 8523546 | PMCID: PMC189823
Role of matrix in an early postentry step in the human immunodeficiency virus type 1 life cycle.
J Virol, 72(5):4116-4126, 01 May 1998
Cited by: 106 articles | PMID: 9557701 | PMCID: PMC109641
Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix and alpha-helix 2 of the gp41 cytoplasmic tail.
J Virol, 74(8):3548-3554, 01 Apr 2000
Cited by: 159 articles | PMID: 10729129 | PMCID: PMC111863
The frantic play of the concealed HIV envelope cytoplasmic tail.
Retrovirology, 10:54, 24 May 2013
Cited by: 32 articles | PMID: 23705972 | PMCID: PMC3686653
Review Free full text in Europe PMC