Abstract
Free full text
The calcium-binding protein cell division cycle 31 of Saccharomyces cerevisiae is a component of the half bridge of the spindle pole body
Abstract
Cdc31 mutants of Saccharomyces cerevisiae arrest at the nonpermissive temperature with large buds, G2 DNA content and, a single, abnormally large spindle pole body (SPB) (Byers, B. 1981. Molecular Genetics in Yeast. Alfred Benzon Symposium. 16:119-133). In this report, we show that the CDC31 gene product is essential for cell viability. We demonstrate that purified CDC31 protein binds Ca2+ and that this binding is highly specific. Taken together, three lines of evidence indicate that CDC31 is a component of the SPB. First, CDC31 cofractionates with enriched preparations of SPBs. Second, immunofluorescence staining indicates that CDC31 colocalizes with a known SPB component. Third, immunoelectron microscopy with whole cells and with isolated SPBs reveals that CDC31 is localized to the half bridge of the SPB, which lies immediately adjacent to the SPB plaques. CDC31 was detected mainly at the cytoplasmic side of the half bridge and, therefore, defines a further substructure of the SPB. We suggest that CDC31 is a member of a family of calcium-binding, centrosome- associated proteins from a phylogenetically diverse group of organisms.
Full Text
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams AE, Pringle JR. Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae. J Cell Biol. 1984 Mar;98(3):934–945. [Europe PMC free article] [Abstract] [Google Scholar]
- Anraku Y, Ohya Y, Iida H. Cell cycle control by calcium and calmodulin in Saccharomyces cerevisiae. Biochim Biophys Acta. 1991 Jul 10;1093(2-3):169–177. [Abstract] [Google Scholar]
- Antebi A, Fink GR. The yeast Ca(2+)-ATPase homologue, PMR1, is required for normal Golgi function and localizes in a novel Golgi-like distribution. Mol Biol Cell. 1992 Jun;3(6):633–654. [Europe PMC free article] [Abstract] [Google Scholar]
- Baron AT, Salisbury JL. Identification and localization of a novel, cytoskeletal, centrosome-associated protein in PtK2 cells. J Cell Biol. 1988 Dec;107(6 Pt 2):2669–2678. [Europe PMC free article] [Abstract] [Google Scholar]
- Baum P, Furlong C, Byers B. Yeast gene required for spindle pole body duplication: homology of its product with Ca2+-binding proteins. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5512–5516. [Europe PMC free article] [Abstract] [Google Scholar]
- Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. [Abstract] [Google Scholar]
- Brundage L, Hendrick JP, Schiebel E, Driessen AJ, Wickner W. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell. 1990 Aug 24;62(4):649–657. [Abstract] [Google Scholar]
- Byers B, Goetsch L. Behavior of spindles and spindle plaques in the cell cycle and conjugation of Saccharomyces cerevisiae. J Bacteriol. 1975 Oct;124(1):511–523. [Europe PMC free article] [Abstract] [Google Scholar]
- Conde J, Fink GR. A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3651–3655. [Europe PMC free article] [Abstract] [Google Scholar]
- Geiser JR, van Tuinen D, Brockerhoff SE, Neff MM, Davis TN. Can calmodulin function without binding calcium? Cell. 1991 Jun 14;65(6):949–959. [Abstract] [Google Scholar]
- Grey M, Brendel M. A ten-minute protocol for transforming Saccharomyces cerevisiae by electroporation. Curr Genet. 1992 Oct;22(4):335–336. [Abstract] [Google Scholar]
- Hoyt MA, Totis L, Roberts BT. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell. 1991 Aug 9;66(3):507–517. [Abstract] [Google Scholar]
- Huang B, Mengersen A, Lee VD. Molecular cloning of cDNA for caltractin, a basal body-associated Ca2+-binding protein: homology in its protein sequence with calmodulin and the yeast CDC31 gene product. J Cell Biol. 1988 Jul;107(1):133–140. [Europe PMC free article] [Abstract] [Google Scholar]
- Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [Abstract] [Google Scholar]
- Li R, Murray AW. Feedback control of mitosis in budding yeast. Cell. 1991 Aug 9;66(3):519–531. [Abstract] [Google Scholar]
- Liu Y, Ishii S, Tokai M, Tsutsumi H, Ohki O, Akada R, Tanaka K, Tsuchiya E, Fukui S, Miyakawa T. The Saccharomyces cerevisiae genes (CMP1 and CMP2) encoding calmodulin-binding proteins homologous to the catalytic subunit of mammalian protein phosphatase 2B. Mol Gen Genet. 1991 May;227(1):52–59. [Abstract] [Google Scholar]
- Mirabito PM, Morris NR. BIMA, a TPR-containing protein required for mitosis, localizes to the spindle pole body in Aspergillus nidulans. J Cell Biol. 1993 Feb;120(4):959–968. [Europe PMC free article] [Abstract] [Google Scholar]
- Miyakawa T, Oka Y, Tsuchiya E, Fukui S. Saccharomyces cerevisiae protein kinase dependent on Ca2+ and calmodulin. J Bacteriol. 1989 Mar;171(3):1417–1422. [Europe PMC free article] [Abstract] [Google Scholar]
- Moudjou M, Paintrand M, Vigues B, Bornens M. A human centrosomal protein is immunologically related to basal body-associated proteins from lower eucaryotes and is involved in the nucleation of microtubules. J Cell Biol. 1991 Oct;115(1):129–140. [Europe PMC free article] [Abstract] [Google Scholar]
- Page BD, Snyder M. CIK1: a developmentally regulated spindle pole body-associated protein important for microtubule functions in Saccharomyces cerevisiae. Genes Dev. 1992 Aug;6(8):1414–1429. [Abstract] [Google Scholar]
- Jones CJ, Stoddart RW. A post-embedding avidin-biotin peroxidase system to demonstrate the light and electron microscopic localization of lectin binding sites in rat kidney tubules. Histochem J. 1986 Jul;18(7):371–379. [Abstract] [Google Scholar]
- Preuss D, Mulholland J, Kaiser CA, Orlean P, Albright C, Rose MD, Robbins PW, Botstein D. Structure of the yeast endoplasmic reticulum: localization of ER proteins using immunofluorescence and immunoelectron microscopy. Yeast. 1991 Dec;7(9):891–911. [Abstract] [Google Scholar]
- Rose MD, Fink GR. KAR1, a gene required for function of both intranuclear and extranuclear microtubules in yeast. Cell. 1987 Mar 27;48(6):1047–1060. [Abstract] [Google Scholar]
- Rothstein RJ. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. [Abstract] [Google Scholar]
- Rout MP, Kilmartin JV. Components of the yeast spindle and spindle pole body. J Cell Biol. 1990 Nov;111(5 Pt 1):1913–1927. [Europe PMC free article] [Abstract] [Google Scholar]
- Salisbury JL, Baron A, Surek B, Melkonian M. Striated flagellar roots: isolation and partial characterization of a calcium-modulated contractile organelle. J Cell Biol. 1984 Sep;99(3):962–970. [Europe PMC free article] [Abstract] [Google Scholar]
- Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [Europe PMC free article] [Abstract] [Google Scholar]
- Schild D, Ananthaswamy HN, Mortimer RK. An endomitotic effect of a cell cycle mutation of Saccharomyces cerevisiae. Genetics. 1981 Mar-Apr;97(3-4):551–562. [Europe PMC free article] [Abstract] [Google Scholar]
- Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. [Europe PMC free article] [Abstract] [Google Scholar]
- Sikorski RS, Michaud WA, Wootton JC, Boguski MS, Connelly C, Hieter P. TPR proteins as essential components of the yeast cell cycle. Cold Spring Harb Symp Quant Biol. 1991;56:663–673. [Abstract] [Google Scholar]
- Starr CM, Hanover JA. Structure and function of the nuclear pore complex: new perspectives. Bioessays. 1990 Jul;12(7):323–330. [Abstract] [Google Scholar]
- Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. [Abstract] [Google Scholar]
- Sun GH, Hirata A, Ohya Y, Anraku Y. Mutations in yeast calmodulin cause defects in spindle pole body functions and nuclear integrity. J Cell Biol. 1992 Dec;119(6):1625–1639. [Europe PMC free article] [Abstract] [Google Scholar]
- Tabor S, Richardson CC. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. [Europe PMC free article] [Abstract] [Google Scholar]
- Thomas JH, Botstein D. A gene required for the separation of chromosomes on the spindle apparatus in yeast. Cell. 1986 Jan 17;44(1):65–76. [Abstract] [Google Scholar]
- Vallen EA, Hiller MA, Scherson TY, Rose MD. Separate domains of KAR1 mediate distinct functions in mitosis and nuclear fusion. J Cell Biol. 1992 Jun;117(6):1277–1287. [Europe PMC free article] [Abstract] [Google Scholar]
- Vallen EA, Scherson TY, Roberts T, van Zee K, Rose MD. Asymmetric mitotic segregation of the yeast spindle pole body. Cell. 1992 May 1;69(3):505–515. [Abstract] [Google Scholar]
- Winey M, Goetsch L, Baum P, Byers B. MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication. J Cell Biol. 1991 Aug;114(4):745–754. [Europe PMC free article] [Abstract] [Google Scholar]
Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press
Full text links
Read article at publisher's site: https://doi.org/10.1083/jcb.123.2.405
Read article for free, from open access legal sources, via Unpaywall: https://rupress.org/jcb/article-pdf/123/2/405/1260694/405.pdf
Citations & impact
Impact metrics
Citations of article over time
Smart citations by scite.ai
Explore citation contexts and check if this article has been
supported or disputed.
https://scite.ai/reports/10.1083/jcb.123.2.405
Article citations
Structural Basis for the Functional Diversity of Centrins: A Focus on Calcium Sensing Properties and Target Recognition.
Int J Mol Sci, 22(22):12173, 10 Nov 2021
Cited by: 5 articles | PMID: 34830049 | PMCID: PMC8622359
Review Free full text in Europe PMC
The N-terminus of Sfi1 and yeast centrin Cdc31 provide the assembly site for a new spindle pole body.
J Cell Biol, 220(3):e202004196, 01 Mar 2021
Cited by: 6 articles | PMID: 33523111 | PMCID: PMC7852455
A role for Saccharomyces cerevisiae Centrin (Cdc31) in mitochondrial function and biogenesis.
Mol Microbiol, 110(5):831-846, 28 Oct 2018
Cited by: 1 article | PMID: 30251372
Plasmodium centrin PbCEN-4 localizes to the putative MTOC and is dispensable for malaria parasite proliferation.
Biol Open, 8(1):bio036822, 29 Jan 2019
Cited by: 21 articles | PMID: 30541825 | PMCID: PMC6361220
The half-bridge component Kar1 promotes centrosome separation and duplication during budding yeast meiosis.
Mol Biol Cell, 29(15):1798-1810, 30 May 2018
Cited by: 3 articles | PMID: 29847244 | PMCID: PMC6085829
Go to all (112) article citations
Data
Similar Articles
To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.
Direct interaction between yeast spindle pole body components: Kar1p is required for Cdc31p localization to the spindle pole body.
J Cell Biol, 125(4):843-852, 01 May 1994
Cited by: 57 articles | PMID: 8188750 | PMCID: PMC2120071
Genetic interactions between CDC31 and KAR1, two genes required for duplication of the microtubule organizing center in Saccharomyces cerevisiae.
Genetics, 137(2):407-422, 01 Jun 1994
Cited by: 51 articles | PMID: 8070654 | PMCID: PMC1205966
Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center.
J Cell Biol, 133(6):1331-1346, 01 Jun 1996
Cited by: 109 articles | PMID: 8682868 | PMCID: PMC2120900
Duplication of the Yeast Spindle Pole Body Once per Cell Cycle.
Mol Cell Biol, 36(9):1324-1331, 15 Apr 2016
Cited by: 25 articles | PMID: 26951196 | PMCID: PMC4836218
Review Free full text in Europe PMC