Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


It is crucial to the eucaryotic cell cycle that the centrosome undergo precise duplication to generate the two poles of the mitotic spindle. In the budding yeast Saccharomyces cerevisiae, centrosomal functions are provided by the spindle pole body (SPB), which is duplicated at the time of bud emergence in G1 of the cell cycle. Genetic control of this process has previously been revealed by the characterization of mutants in CDC31 and KAR1, which prevent SPB duplication and lead to formation of a monopolar spindle. Newly isolated mutations described here (mps1 and mps2, for monopolar spindle) similarly cause monopolar mitosis but their underlying effects on SPB duplication are unique. The MPS1 gene is found by electron microscopy to be essential for proper formation of the site at which the new SPB normally arises adjacent to the existing one. By contrast, a mutation in MPS2 permits duplication to proceed, but the newly formed SPB is structurally defective and unable to serve as a functional spindle pole. Distinct temporal requirements for the CDC31, MPS1, and MPS2 gene functions during the SPB duplication cycle further demonstrate the individual roles of these genes in the morphogenetic pathway.

Free full text 


Logo of jcellbiolLink to Publisher's site
J Cell Biol. 1991 Aug 2; 114(4): 745–754.
PMCID: PMC2289888
PMID: 1869587

MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication

Abstract

It is crucial to the eucaryotic cell cycle that the centrosome undergo precise duplication to generate the two poles of the mitotic spindle. In the budding yeast Saccharomyces cerevisiae, centrosomal functions are provided by the spindle pole body (SPB), which is duplicated at the time of bud emergence in G1 of the cell cycle. Genetic control of this process has previously been revealed by the characterization of mutants in CDC31 and KAR1, which prevent SPB duplication and lead to formation of a monopolar spindle. Newly isolated mutations described here (mps1 and mps2, for monopolar spindle) similarly cause monopolar mitosis but their underlying effects on SPB duplication are unique. The MPS1 gene is found by electron microscopy to be essential for proper formation of the site at which the new SPB normally arises adjacent to the existing one. By contrast, a mutation in MPS2 permits duplication to proceed, but the newly formed SPB is structurally defective and unable to serve as a functional spindle pole. Distinct temporal requirements for the CDC31, MPS1, and MPS2 gene functions during the SPB duplication cycle further demonstrate the individual roles of these genes in the morphogenetic pathway.

Full Text

The Full Text of this article is available as a PDF (1.3M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Baum P, Furlong C, Byers B. Yeast gene required for spindle pole body duplication: homology of its product with Ca2+-binding proteins. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5512–5516. [Europe PMC free article] [Abstract] [Google Scholar]
  • Baum P, Yip C, Goetsch L, Byers B. A yeast gene essential for regulation of spindle pole duplication. Mol Cell Biol. 1988 Dec;8(12):5386–5397. [Europe PMC free article] [Abstract] [Google Scholar]
  • Brinkley BR. Microtubule organizing centers. Annu Rev Cell Biol. 1985;1:145–172. [Abstract] [Google Scholar]
  • Byers B, Goetsch L. Duplication of spindle plaques and integration of the yeast cell cycle. Cold Spring Harb Symp Quant Biol. 1974;38:123–131. [Abstract] [Google Scholar]
  • Byers B, Goetsch L. Behavior of spindles and spindle plaques in the cell cycle and conjugation of Saccharomyces cerevisiae. J Bacteriol. 1975 Oct;124(1):511–523. [Europe PMC free article] [Abstract] [Google Scholar]
  • Conde J, Fink GR. A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3651–3655. [Europe PMC free article] [Abstract] [Google Scholar]
  • Gard DL, Hafezi S, Zhang T, Doxsey SJ. Centrosome duplication continues in cycloheximide-treated Xenopus blastulae in the absence of a detectable cell cycle. J Cell Biol. 1990 Jun;110(6):2033–2042. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hartwell LH. Macromolecule synthesis in temperature-sensitive mutants of yeast. J Bacteriol. 1967 May;93(5):1662–1670. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events. Science. 1989 Nov 3;246(4930):629–634. [Abstract] [Google Scholar]
  • Hutter KJ, Eipel HE. Microbial determinations by flow cytometry. J Gen Microbiol. 1979 Aug;113(2):369–375. [Abstract] [Google Scholar]
  • Jacobs CW, Adams AE, Szaniszlo PJ, Pringle JR. Functions of microtubules in the Saccharomyces cerevisiae cell cycle. J Cell Biol. 1988 Oct;107(4):1409–1426. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kilmartin JV, Adams AE. Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J Cell Biol. 1984 Mar;98(3):922–933. [Europe PMC free article] [Abstract] [Google Scholar]
  • Klotz C, Dabauvalle MC, Paintrand M, Weber T, Bornens M, Karsenti E. Parthenogenesis in Xenopus eggs requires centrosomal integrity. J Cell Biol. 1990 Feb;110(2):405–415. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kochanski RS, Borisy GG. Mode of centriole duplication and distribution. J Cell Biol. 1990 May;110(5):1599–1605. [Europe PMC free article] [Abstract] [Google Scholar]
  • Komesli S, Tournier F, Paintrand M, Margolis RL, Job D, Bornens M. Mass isolation of calf thymus centrosomes: identification of a specific configuration. J Cell Biol. 1989 Dec;109(6 Pt 1):2869–2878. [Europe PMC free article] [Abstract] [Google Scholar]
  • McCusker JH, Haber JE. Cycloheximide-resistant temperature-sensitive lethal mutations of Saccharomyces cerevisiae. Genetics. 1988 Jun;119(2):303–315. [Europe PMC free article] [Abstract] [Google Scholar]
  • Rose MD, Fink GR. KAR1, a gene required for function of both intranuclear and extranuclear microtubules in yeast. Cell. 1987 Mar 27;48(6):1047–1060. [Abstract] [Google Scholar]
  • Rout MP, Kilmartin JV. Components of the yeast spindle and spindle pole body. J Cell Biol. 1990 Nov;111(5 Pt 1):1913–1927. [Europe PMC free article] [Abstract] [Google Scholar]
  • Schild D, Ananthaswamy HN, Mortimer RK. An endomitotic effect of a cell cycle mutation of Saccharomyces cerevisiae. Genetics. 1981 Mar-Apr;97(3-4):551–562. [Europe PMC free article] [Abstract] [Google Scholar]
  • Sluder G. Centrosomes and the cell cycle. J Cell Sci Suppl. 1989;12:253–275. [Abstract] [Google Scholar]
  • Sluder G, Miller FJ, Cole R, Rieder CL. Protein synthesis and the cell cycle: centrosome reproduction in sea urchin eggs is not under translational control. J Cell Biol. 1990 Jun;110(6):2025–2032. [Europe PMC free article] [Abstract] [Google Scholar]
  • Thomas JH, Botstein D. A gene required for the separation of chromosomes on the spindle apparatus in yeast. Cell. 1986 Jan 17;44(1):65–76. [Abstract] [Google Scholar]
  • Uzawa S, Samejima I, Hirano T, Tanaka K, Yanagida M. The fission yeast cut1+ gene regulates spindle pole body duplication and has homology to the budding yeast ESP1 gene. Cell. 1990 Sep 7;62(5):913–925. [Abstract] [Google Scholar]
  • Weinert TA, Hartwell LH. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science. 1988 Jul 15;241(4863):317–322. [Abstract] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/5072524
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/5072524

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1083/jcb.114.4.745

Supporting
Mentioning
Contrasting
18
395
2

Article citations


Go to all (215) article citations

Data 


Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.

Funding 


Funders who supported this work.

NCIRD CDC HHS (1)

NIGMS NIH HHS (2)