Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The adhesion of polymorphonuclear leukocytes (PMNs) to vascular endothelial cells (EC) is an early and fundamental event in acute inflammation. This process requires the regulated expression of molecules on both the EC and PMN. EC stimulated with histamine or thrombin coexpress two proadhesive molecules within minutes: granule membrane protein 140 (GMP-140), a member of the selectin family, and platelet-activating factor (PAF), a biologically active phospholipid. Coexpression of GMP-140 and PAF is required for maximal PMN adhesion and the two molecules act in a cooperative fashion. The component of adhesion mediated by EC-associated PAF requires activation of CD11/CD18 integrins on the PMN and binding of these heterodimers to counterreceptors on the EC. GMP-140 also binds to a receptor on the PMN; however, it tethers the PMN to the EC without requiring activation of CD11/CD18 integrins. This component of the adhesive interaction is blocked by antibodies to GMP-140 or by GMP-140 in the fluid phase. Experiments with purified GMP-140 indicate that binding to its receptor on the PMN does not directly induce PMN adhesiveness but that it potentiates the CD11/CD18-dependent adhesive response to PAF by a mechanism that involves events distal to the PAF receptor. Tethering of the PMN to the EC by GMP-140 may also be required for efficient interaction of PAF with its receptor on the PMN. These observations define a complex cell recognition system in which tethering of PMNs by a selectin, GMP-140, facilitates juxtacrine activation of the leukocytes by a signaling molecule, PAF. The latter event recruits the third component of the adhesive interaction, the CD11/CD18 integrins.

Free full text 


Logo of jcellbiolLink to Publisher's site
J Cell Biol. 1991 Oct 1; 115(1): 223–234.
PMCID: PMC2289934
PMID: 1717478

Coexpression of GMP-140 and PAF by endothelium stimulated by histamine or thrombin: a juxtacrine system for adhesion and activation of neutrophils

Abstract

The adhesion of polymorphonuclear leukocytes (PMNs) to vascular endothelial cells (EC) is an early and fundamental event in acute inflammation. This process requires the regulated expression of molecules on both the EC and PMN. EC stimulated with histamine or thrombin coexpress two proadhesive molecules within minutes: granule membrane protein 140 (GMP-140), a member of the selectin family, and platelet-activating factor (PAF), a biologically active phospholipid. Coexpression of GMP-140 and PAF is required for maximal PMN adhesion and the two molecules act in a cooperative fashion. The component of adhesion mediated by EC-associated PAF requires activation of CD11/CD18 integrins on the PMN and binding of these heterodimers to counterreceptors on the EC. GMP-140 also binds to a receptor on the PMN; however, it tethers the PMN to the EC without requiring activation of CD11/CD18 integrins. This component of the adhesive interaction is blocked by antibodies to GMP-140 or by GMP-140 in the fluid phase. Experiments with purified GMP-140 indicate that binding to its receptor on the PMN does not directly induce PMN adhesiveness but that it potentiates the CD11/CD18-dependent adhesive response to PAF by a mechanism that involves events distal to the PAF receptor. Tethering of the PMN to the EC by GMP-140 may also be required for efficient interaction of PAF with its receptor on the PMN. These observations define a complex cell recognition system in which tethering of PMNs by a selectin, GMP-140, facilitates juxtacrine activation of the leukocytes by a signaling molecule, PAF. The latter event recruits the third component of the adhesive interaction, the CD11/CD18 integrins.

Full Text

The Full Text of this article is available as a PDF (1.5M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Anderson DC, Springer TA. Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Annu Rev Med. 1987;38:175–194. [Abstract] [Google Scholar]
  • Anderson DC, Miller LJ, Schmalstieg FC, Rothlein R, Springer TA. Contributions of the Mac-1 glycoprotein family to adherence-dependent granulocyte functions: structure-function assessments employing subunit-specific monoclonal antibodies. J Immunol. 1986 Jul 1;137(1):15–27. [Abstract] [Google Scholar]
  • Anklesaria P, Teixidó J, Laiho M, Pierce JH, Greenberger JS, Massagué J. Cell-cell adhesion mediated by binding of membrane-anchored transforming growth factor alpha to epidermal growth factor receptors promotes cell proliferation. Proc Natl Acad Sci U S A. 1990 May;87(9):3289–3293. [Europe PMC free article] [Abstract] [Google Scholar]
  • Beatty PG, Ledbetter JA, Martin PJ, Price TH, Hansen JA. Definition of a common leukocyte cell-surface antigen (Lp95-150) associated with diverse cell-mediated immune functions. J Immunol. 1983 Dec;131(6):2913–2918. [Abstract] [Google Scholar]
  • Berman CL, Yeo EL, Wencel-Drake JD, Furie BC, Ginsberg MH, Furie B. A platelet alpha granule membrane protein that is associated with the plasma membrane after activation. Characterization and subcellular localization of platelet activation-dependent granule-external membrane protein. J Clin Invest. 1986 Jul;78(1):130–137. [Europe PMC free article] [Abstract] [Google Scholar]
  • Bevilacqua MP, Pober JS, Wheeler ME, Cotran RS, Gimbrone MA., Jr Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines. J Clin Invest. 1985 Nov;76(5):2003–2011. [Europe PMC free article] [Abstract] [Google Scholar]
  • Bevilacqua MP, Pober JS, Mendrick DL, Cotran RS, Gimbrone MA., Jr Identification of an inducible endothelial-leukocyte adhesion molecule. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9238–9242. [Europe PMC free article] [Abstract] [Google Scholar]
  • Bevilacqua MP, Stengelin S, Gimbrone MA, Jr, Seed B. Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science. 1989 Mar 3;243(4895):1160–1165. [Abstract] [Google Scholar]
  • Bixby JL, Pratt RS, Lilien J, Reichardt LF. Neurite outgrowth on muscle cell surfaces involves extracellular matrix receptors as well as Ca2+-dependent and -independent cell adhesion molecules. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2555–2559. [Europe PMC free article] [Abstract] [Google Scholar]
  • Bohnsack JF, Akiyama SK, Damsky CH, Knape WA, Zimmerman GA. Human neutrophil adherence to laminin in vitro. Evidence for a distinct neutrophil integrin receptor for laminin. J Exp Med. 1990 Apr 1;171(4):1221–1237. [Europe PMC free article] [Abstract] [Google Scholar]
  • Bonfanti R, Furie BC, Furie B, Wagner DD. PADGEM (GMP140) is a component of Weibel-Palade bodies of human endothelial cells. Blood. 1989 Apr;73(5):1109–1112. [Abstract] [Google Scholar]
  • Bray PF, Rosa JP, Lingappa VR, Kan YW, McEver RP, Shuman MA. Biogenesis of the platelet receptor for fibrinogen: evidence for separate precursors for glycoproteins IIb and IIIa. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1480–1484. [Europe PMC free article] [Abstract] [Google Scholar]
  • Camerini D, James SP, Stamenkovic I, Seed B. Leu-8/TQ1 is the human equivalent of the Mel-14 lymph node homing receptor. Nature. 1989 Nov 2;342(6245):78–82. [Abstract] [Google Scholar]
  • Carveth HJ, Bohnsack JF, McIntyre TM, Baggiolini M, Prescott SM, Zimmerman GA. Neutrophil activating factor (NAF) induces polymorphonuclear leukocyte adherence to endothelial cells and to subendothelial matrix proteins. Biochem Biophys Res Commun. 1989 Jul 14;162(1):387–393. [Abstract] [Google Scholar]
  • Dobrina A, Schwartz BR, Carlos TM, Ochs HD, Beatty PG, Harlan JM. CD11/CD18-independent neutrophil adherence to inducible endothelial-leucocyte adhesion molecules (E-LAM) in vitro. Immunology. 1989 Aug;67(4):502–508. [Abstract] [Google Scholar]
  • Doerschuk CM, Winn RK, Coxson HO, Harlan JM. CD18-dependent and -independent mechanisms of neutrophil emigration in the pulmonary and systemic microcirculation of rabbits. J Immunol. 1990 Mar 15;144(6):2327–2333. [Abstract] [Google Scholar]
  • Gamble JR, Harlan JM, Klebanoff SJ, Vadas MA. Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8667–8671. [Europe PMC free article] [Abstract] [Google Scholar]
  • Gamble JR, Skinner MP, Berndt MC, Vadas MA. Prevention of activated neutrophil adhesion to endothelium by soluble adhesion protein GMP140. Science. 1990 Jul 27;249(4967):414–417. [Abstract] [Google Scholar]
  • Geng JG, Bevilacqua MP, Moore KL, McIntyre TM, Prescott SM, Kim JM, Bliss GA, Zimmerman GA, McEver RP. Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature. 1990 Feb 22;343(6260):757–760. [Abstract] [Google Scholar]
  • Hamburger SA, McEver RP. GMP-140 mediates adhesion of stimulated platelets to neutrophils. Blood. 1990 Feb 1;75(3):550–554. [Abstract] [Google Scholar]
  • Harlan JM, Killen PD, Senecal FM, Schwartz BR, Yee EK, Taylor RF, Beatty PG, Price TH, Ochs HD. The role of neutrophil membrane glycoprotein GP-150 in neutrophil adherence to endothelium in vitro. Blood. 1985 Jul;66(1):167–178. [Abstract] [Google Scholar]
  • Hattori R, Hamilton KK, Fugate RD, McEver RP, Sims PJ. Stimulated secretion of endothelial von Willebrand factor is accompanied by rapid redistribution to the cell surface of the intracellular granule membrane protein GMP-140. J Biol Chem. 1989 May 15;264(14):7768–7771. [Abstract] [Google Scholar]
  • Honda Z, Nakamura M, Miki I, Minami M, Watanabe T, Seyama Y, Okado H, Toh H, Ito K, Miyamoto T, et al. Cloning by functional expression of platelet-activating factor receptor from guinea-pig lung. Nature. 1991 Jan 24;349(6307):342–346. [Abstract] [Google Scholar]
  • Hwang SB. Identification of a second putative receptor of platelet-activating factor from human polymorphonuclear leukocytes. J Biol Chem. 1988 Mar 5;263(7):3225–3233. [Abstract] [Google Scholar]
  • Hwang SB, Wang S. Wheat germ agglutinin potentiates specific binding of platelet-activating factor to human platelet membranes and induces platelet-activating factor synthesis in intact platelets. Mol Pharmacol. 1991 Jun;39(6):788–797. [Abstract] [Google Scholar]
  • Johnston GI, Cook RG, McEver RP. Cloning of GMP-140, a granule membrane protein of platelets and endothelium: sequence similarity to proteins involved in cell adhesion and inflammation. Cell. 1989 Mar 24;56(6):1033–1044. [Abstract] [Google Scholar]
  • Johnston GI, Kurosky A, McEver RP. Structural and biosynthetic studies of the granule membrane protein, GMP-140, from human platelets and endothelial cells. J Biol Chem. 1989 Jan 25;264(3):1816–1823. [Abstract] [Google Scholar]
  • Kishimoto TK, Jutila MA, Berg EL, Butcher EC. Neutrophil Mac-1 and MEL-14 adhesion proteins inversely regulated by chemotactic factors. Science. 1989 Sep 15;245(4923):1238–1241. [Abstract] [Google Scholar]
  • Larsen E, Celi A, Gilbert GE, Furie BC, Erban JK, Bonfanti R, Wagner DD, Furie B. PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell. 1989 Oct 20;59(2):305–312. [Abstract] [Google Scholar]
  • Larsen E, Palabrica T, Sajer S, Gilbert GE, Wagner DD, Furie BC, Furie B. PADGEM-dependent adhesion of platelets to monocytes and neutrophils is mediated by a lineage-specific carbohydrate, LNF III (CD15). Cell. 1990 Nov 2;63(3):467–474. [Abstract] [Google Scholar]
  • Lasky LA, Singer MS, Yednock TA, Dowbenko D, Fennie C, Rodriguez H, Nguyen T, Stachel S, Rosen SD. Cloning of a lymphocyte homing receptor reveals a lectin domain. Cell. 1989 Mar 24;56(6):1045–1055. [Abstract] [Google Scholar]
  • Lawrence MB, Smith CW, Eskin SG, McIntire LV. Effect of venous shear stress on CD18-mediated neutrophil adhesion to cultured endothelium. Blood. 1990 Jan 1;75(1):227–237. [Abstract] [Google Scholar]
  • Lewis MS, Whatley RE, Cain P, McIntyre TM, Prescott SM, Zimmerman GA. Hydrogen peroxide stimulates the synthesis of platelet-activating factor by endothelium and induces endothelial cell-dependent neutrophil adhesion. J Clin Invest. 1988 Dec;82(6):2045–2055. [Europe PMC free article] [Abstract] [Google Scholar]
  • Lo SK, Detmers PA, Levin SM, Wright SD. Transient adhesion of neutrophils to endothelium. J Exp Med. 1989 May 1;169(5):1779–1793. [Europe PMC free article] [Abstract] [Google Scholar]
  • Luscinskas FW, Brock AF, Arnaout MA, Gimbrone MA., Jr Endothelial-leukocyte adhesion molecule-1-dependent and leukocyte (CD11/CD18)-dependent mechanisms contribute to polymorphonuclear leukocyte adhesion to cytokine-activated human vascular endothelium. J Immunol. 1989 Apr 1;142(7):2257–2263. [Abstract] [Google Scholar]
  • Marlin SD, Springer TA. Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell. 1987 Dec 4;51(5):813–819. [Abstract] [Google Scholar]
  • Martz E. LFA-1 and other accessory molecules functioning in adhesions of T and B lymphocytes. Hum Immunol. 1987 Jan;18(1):3–37. [Abstract] [Google Scholar]
  • McEver RP. Selectins: novel receptors that mediate leukocyte adhesion during inflammation. Thromb Haemost. 1991 Mar 4;65(3):223–228. [Abstract] [Google Scholar]
  • McEver RP, Martin MN. A monoclonal antibody to a membrane glycoprotein binds only to activated platelets. J Biol Chem. 1984 Aug 10;259(15):9799–9804. [Abstract] [Google Scholar]
  • McEver RP, Bennett EM, Martin MN. Identification of two structurally and functionally distinct sites on human platelet membrane glycoprotein IIb-IIIa using monoclonal antibodies. J Biol Chem. 1983 Apr 25;258(8):5269–5275. [Abstract] [Google Scholar]
  • McEver RP, Beckstead JH, Moore KL, Marshall-Carlson L, Bainton DF. GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J Clin Invest. 1989 Jul;84(1):92–99. [Europe PMC free article] [Abstract] [Google Scholar]
  • McIntyre TM, Zimmerman GA, Satoh K, Prescott SM. Cultured endothelial cells synthesize both platelet-activating factor and prostacyclin in response to histamine, bradykinin, and adenosine triphosphate. J Clin Invest. 1985 Jul;76(1):271–280. [Europe PMC free article] [Abstract] [Google Scholar]
  • McIntyre TM, Zimmerman GA, Prescott SM. Leukotrienes C4 and D4 stimulate human endothelial cells to synthesize platelet-activating factor and bind neutrophils. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2204–2208. [Europe PMC free article] [Abstract] [Google Scholar]
  • Moore KL, Varki A, McEver RP. GMP-140 binds to a glycoprotein receptor on human neutrophils: evidence for a lectin-like interaction. J Cell Biol. 1991 Feb;112(3):491–499. [Europe PMC free article] [Abstract] [Google Scholar]
  • Osborn L. Leukocyte adhesion to endothelium in inflammation. Cell. 1990 Jul 13;62(1):3–6. [Abstract] [Google Scholar]
  • Parker CJ, Frame RN, Elstad MR. Vitronectin (S protein) augments the functional activity of monocyte receptors for IgG and complement C3b. Blood. 1988 Jan;71(1):86–93. [Abstract] [Google Scholar]
  • Patel KD, Zimmerman GA, Prescott SM, McEver RP, McIntyre TM. Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils. J Cell Biol. 1991 Feb;112(4):749–759. [Europe PMC free article] [Abstract] [Google Scholar]
  • Prescott SM, Zimmerman GA, McIntyre TM. Human endothelial cells in culture produce platelet-activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) when stimulated with thrombin. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3534–3538. [Europe PMC free article] [Abstract] [Google Scholar]
  • Prescott SM, Zimmerman GA, McIntyre TM. Platelet-activating factor. J Biol Chem. 1990 Oct 15;265(29):17381–17384. [Abstract] [Google Scholar]
  • Rutishauser U, Acheson A, Hall AK, Mann DM, Sunshine J. The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions. Science. 1988 Apr 1;240(4848):53–57. [Abstract] [Google Scholar]
  • Siegelman MH, van de Rijn M, Weissman IL. Mouse lymph node homing receptor cDNA clone encodes a glycoprotein revealing tandem interaction domains. Science. 1989 Mar 3;243(4895):1165–1172. [Abstract] [Google Scholar]
  • Singer II, Scott S, Kawka DW, Kazazis DM. Adhesomes: specific granules containing receptors for laminin, C3bi/fibrinogen, fibronectin, and vitronectin in human polymorphonuclear leukocytes and monocytes. J Cell Biol. 1989 Dec;109(6 Pt 1):3169–3182. [Europe PMC free article] [Abstract] [Google Scholar]
  • Smith CW, Marlin SD, Rothlein R, Toman C, Anderson DC. Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J Clin Invest. 1989 Jun;83(6):2008–2017. [Europe PMC free article] [Abstract] [Google Scholar]
  • Springer TA. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. [Abstract] [Google Scholar]
  • Springer TA, Lasky LA. Cell adhesion. Sticky sugars for selectins. Nature. 1991 Jan 17;349(6306):196–197. [Abstract] [Google Scholar]
  • Stenberg PE, McEver RP, Shuman MA, Jacques YV, Bainton DF. A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J Cell Biol. 1985 Sep;101(3):880–886. [Europe PMC free article] [Abstract] [Google Scholar]
  • Stocks SC, Albrechtsen M, Kerr MA. Expression of the CD15 differentiation antigen (3-fucosyl-N-acetyl-lactosamine, LeX) on putative neutrophil adhesion molecules CR3 and NCA-160. Biochem J. 1990 Jun 1;268(2):275–280. [Europe PMC free article] [Abstract] [Google Scholar]
  • Tedder TF, Isaacs CM, Ernst TJ, Demetri GD, Adler DA, Disteche CM. Isolation and chromosomal localization of cDNAs encoding a novel human lymphocyte cell surface molecule, LAM-1. Homology with the mouse lymphocyte homing receptor and other human adhesion proteins. J Exp Med. 1989 Jul 1;170(1):123–133. [Europe PMC free article] [Abstract] [Google Scholar]
  • Watson SR, Fennie C, Lasky LA. Neutrophil influx into an inflammatory site inhibited by a soluble homing receptor-IgG chimaera. Nature. 1991 Jan 10;349(6305):164–167. [Abstract] [Google Scholar]
  • Wright SD, Rao PE, Van Voorhis WC, Craigmyle LS, Iida K, Talle MA, Westberg EF, Goldstein G, Silverstein SC. Identification of the C3bi receptor of human monocytes and macrophages by using monoclonal antibodies. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5699–5703. [Europe PMC free article] [Abstract] [Google Scholar]
  • Zimmerman GA, McIntyre TM. Neutrophil adherence to human endothelium in vitro occurs by CDw18 (Mo1, MAC-1/LFA-1/GP 150,95) glycoprotein-dependent and -independent mechanisms. J Clin Invest. 1988 Feb;81(2):531–537. [Europe PMC free article] [Abstract] [Google Scholar]
  • Zimmerman GA, McIntyre TM, Prescott SM. Thrombin stimulates the adherence of neutrophils to human endothelial cells in vitro. J Clin Invest. 1985 Dec;76(6):2235–2246. [Europe PMC free article] [Abstract] [Google Scholar]
  • Zimmerman GA, McIntyre TM, Mehra M, Prescott SM. Endothelial cell-associated platelet-activating factor: a novel mechanism for signaling intercellular adhesion. J Cell Biol. 1990 Feb;110(2):529–540. [Europe PMC free article] [Abstract] [Google Scholar]
  • Zimmerman GA, Whatley RE, McIntyre TM, Benson DM, Prescott SM. Endothelial cells for studies of platelet-activating factor and arachidonate metabolites. Methods Enzymol. 1990;187:520–535. [Abstract] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/41414687
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/41414687

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1083/jcb.115.1.223

Supporting
Mentioning
Contrasting
16
306
1

Article citations


Go to all (325) article citations

Funding 


Funders who supported this work.

NHLBI NIH HHS (3)