Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Free microtubule or actin filaments, along with the monomeric forms of the protein, hydrolyze GTP or ATP to produce a flux of subunits through the polymer. This flux, called treadmilling, produces no useful work. In the cell, however, these filaments are likely to be constrained between nucleating sites and other barriers that will limit polymer growth. We study here the effects of a small compression of the filaments resulting from polymerization against such barriers. If subunits can still exchange at the two ends, treadmilling will take place here as well. Under these conditions, the filament system can do useful work. The free energy of NTP hydrolysis can be used to transport materials, attached to the filament, against a resisting force. This process can in principle take place at high efficiency and bears a resemblance in a bioenergetic sense to the utilization of ATP free energy in muscle contraction. The same general principles apply to a polymer in which one end is anchored and one end is free.

Free full text 


Logo of pnasLink to Publisher's site
Proc Natl Acad Sci U S A. 1982 Jan; 79(2): 490–494.
PMCID: PMC345769
PMID: 6952202

Subunit treadmilling of microtubules or actin in the presence of cellular barriers: possible conversion of chemical free energy into mechanical work.

Abstract

Free microtubule or actin filaments, along with the monomeric forms of the protein, hydrolyze GTP or ATP to produce a flux of subunits through the polymer. This flux, called treadmilling, produces no useful work. In the cell, however, these filaments are likely to be constrained between nucleating sites and other barriers that will limit polymer growth. We study here the effects of a small compression of the filaments resulting from polymerization against such barriers. If subunits can still exchange at the two ends, treadmilling will take place here as well. Under these conditions, the filament system can do useful work. The free energy of NTP hydrolysis can be used to transport materials, attached to the filament, against a resisting force. This process can in principle take place at high efficiency and bears a resemblance in a bioenergetic sense to the utilization of ATP free energy in muscle contraction. The same general principles apply to a polymer in which one end is anchored and one end is free.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (885K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1073/pnas.79.2.490

Supporting
Mentioning
Contrasting
4
40
0

Article citations


Go to all (41) article citations