Aller au contenu

Calculateur prodige

Un article de Wikipédia, l'encyclopédie libre.
Le prodige espagnol Alberto Coto-García.

Un calculateur prodige est une personne capable d'effectuer mentalement des opérations mathématiques impliquant des nombres très grands ou encore des calculs mentaux très rapides.

Don et méthode

[modifier | modifier le code]

Avant l'avènement des ordinateurs, les calculateurs prodiges étaient souvent employés dans les instituts de recherche nécessitant des calculs complexes et longs, comme les calculs d'astrophysique ou de cristallographie[1].

Le plus souvent, ces calculateurs possèdent un « don », dans le sens où ils n'ont pas étudié les mathématiques. Selon le témoignage de certains d'entre eux, comme la prodige indienne Shakuntala Devi[N 1] (1929-2013), ils « voient » la réponse, un phénomène appelé synesthésie. Ils sont en général peu éduqués et présentent souvent des particularités cognitives telles que l'autisme. Henri Mondeux et Giacomo Inaudi n’étaient par exemple que de simples bergers. À l'opposé, Euler, Gauss et Aitken étaient des mathématiciens, et Wim Klein connaissait l'usage des logarithmes.

Une méthode utilisée par certains calculateurs prodiges est l'apprentissage des résultats. De la même façon qu'un élève, même en connaissant la logique de la multiplication, ne pourra donner une réponse immédiate qu'en apprenant par cœur le résultat, le calculateur prodige apprend, lui, les nombreux résultats d'opérations de calcul plus complexes. Cet apprentissage aide aussi pour retrouver des calculs non appris mais liés, de la même façon qu'une personne n'ayant appris que les additions peut en utilisant celles-ci retrouver les résultats des multiplications sans passer par sa mémoire.

Liste de calculateurs prodiges

[modifier | modifier le code]
Jedediah Buxton (en).

Notes et références

[modifier | modifier le code]
  1. À un professeur de l’Université Manipal de Dubaï qui lui demandait si elle visualisait les nombres mentalement (« How do you do the calculations? Do you visualise the numbers in your head? »), S. Devi répondit : « Cela me vient tout seul. Je n'ai pas à penser au procédé » (-It just comes out. I don't have time to think about the process.) ; extrait de l'article (en) Amelia Naidoo, Jija Jose, « Number Crunching Genius », Gulfnews.com, no 22 juin,‎ (lire en ligne).

Références

[modifier | modifier le code]
  1. Wim Klein fut par exemple employé au CERN: cf. René Taton, Le calcul mental, PUF, coll. « Que sais-je », « Psychologie et pédagogie », p. 98
  2. Jean-Paul Delahaye, Merveilleux nombres premiers : voyage au coeur de l'arithmétique, Paris, Belin/Pour la science, coll. « Bibliothèque scientifique », , 294 p. (ISBN 978-2-84245-117-2), « Un monde étrange et troublant », p. 73-75

    « Colburn avait donc appris par cœur ces tables qui donnent les deux derniers chiffres de tous les produits de deux nombres de un ou deux chiffres (non pairs et non multiples de 5). Cette connaissance, associée à sa faculté de faire instantanément les multiplications de peu de chiffres et au bon algorithme qu'il décrit lui-même, suffisent finalement à expliquer son aptitude. Celle-ci n'est donc pas surnaturelle, quoiqu'assurément exceptionnelle. »

  3. Cf. Ch. Letourneau, « M. Périclès Diamandi calculateur mental », Bulletins de la Société d'anthropologie de Paris, v°, vol. 2,‎ , p. 15-17 (DOI 10.3406/bmsap.1901.5938)

Sur les autres projets Wikimedia :

Bibliographie

[modifier | modifier le code]
  • René Taton, Le calcul mental, PUF, coll. « Que sais-je », « Psychologie et pédagogie », p. 96-98
  • Alfred Binet, Psychologie des grands calculateurs et des joueurs d'échecs, Paris, Hachette, (lire en ligne), lire en ligne sur Gallica
  • Jules Regnault, [Les] Calculateurs prodiges, L'art de jongler avec les nombres. Illusionnisme et calcul mental, Paris, Payot, (réimpr. 1952)
  • Robert Tocquet, 2 + 2 = 4, les calculateurs prodiges et leurs secrets ; comment calculer mentalement ; les animaux calculateurs, Paris, P. Amiot,
  • (en) Bertram V. Bowden, Faster than thought, Londres, Pitman, (OCLC 1053355, lire en ligne) (identifiant Open Library (ol) = 13581728M).

Articles connexes

[modifier | modifier le code]

Liens externes

[modifier | modifier le code]