Aller au contenu

Opérations sur les fonctions/Composition

Leçons de niveau 12
Une page de Wikiversité, la communauté pédagogique libre.
Début de la boite de navigation du chapitre
Composition
Icône de la faculté
Chapitre no 4
Leçon : Opérations sur les fonctions
Chap. préc. :Produit et quotient
Chap. suiv. :Sommaire

Exercices :

Composition
fin de la boite de navigation du chapitre
En raison de limitations techniques, la typographie souhaitable du titre, « Opérations sur les fonctions : Composition
Opérations sur les fonctions/Composition
 », n'a pu être restituée correctement ci-dessus.
descriptif indisponible
Wikipedia-logo-v2.svg
Wikipédia possède un article à propos de « Composition de fonctions ».

Composée de deux fonctions

[modifier | modifier le wikicode]


L'opération de composition revient ainsi à appliquer les deux fonctions d'affilée.

qui peut se ramener à

Panneau d’avertissement Attention à l’ordre ! La composition n’est pas commutative.

En effet :

  • pour tout ,
  • pour tout ,

donnent des résultats différents. Voyons cela sur quelques exemples.

Début de l'exemple
Fin de l'exemple


Dans les exemples ci-dessus, toutes les fonctions étaient définies de dans mais en général, il peut même arriver que l'une des deux composées et soit définie et pas l'autre. Plus précisément, pour que la fonction soit bien définie, il faut que pour tout , l'image de par soit dans le domaine de définition de .

Ceci nous conduit à préciser la définition :



Composée de trois fonctions

[modifier | modifier le wikicode]
Début de l'exemple
Fin de l'exemple


Début d’un théorème
Fin du théorème



Puissances itérées d'une fonction

[modifier | modifier le wikicode]


Début de l'exemple
Fin de l'exemple