数学の特に射影幾何学における射影直線(しゃえいちょくせん、英: projective line)は、俗に言えば通常の直線に無限遠点と呼ばれる補助的な点を付け加えて延長したものである。これにより、初等幾何学における多くの定理の主張や証明が(特別な場合を除く必要が無くなり)簡素な記述になる。例えば、二つの相異なる射影直線は射影平面においてちょうど一点において交わる(「平行」な場合は存在しない)。 射影直線の定式化には同値な多くの方法が存在する。もっとも広く用いられるのは、射影直線を二次元ベクトル空間内の一次元部分線型空間全体の成す集合として定義するものである。これはより一般の射影空間の定義の特別の場合になっている。