弱位相(じゃくいそう、英: weak topology)とは、ノルム空間X上に定義される位相の一つである。体K上のノルム空間にはノルムから定まる位相(ノルム位相。弱位相と区別するため強位相とも呼ばれる)があるが、弱位相はこれよりも弱い(強くない)位相であり、X上のK値有界線形写像(すなわちXの共役空間X*の元)が全て連続になる最弱な位相である。なお弱位相は位相空間論におけるの特別な場合に当たる。 強位相に関するものと区別するため、弱位相に関する連続性、収束性、コンパクト性はそれぞれ弱連続性、弱収束性、弱コンパクト性と呼ばれる。 本項では弱位相の関連概念である*弱位相についても述べる。

Property Value
dbo:abstract
  • 弱位相(じゃくいそう、英: weak topology)とは、ノルム空間X上に定義される位相の一つである。体K上のノルム空間にはノルムから定まる位相(ノルム位相。弱位相と区別するため強位相とも呼ばれる)があるが、弱位相はこれよりも弱い(強くない)位相であり、X上のK値有界線形写像(すなわちXの共役空間X*の元)が全て連続になる最弱な位相である。なお弱位相は位相空間論におけるの特別な場合に当たる。 強位相に関するものと区別するため、弱位相に関する連続性、収束性、コンパクト性はそれぞれ弱連続性、弱収束性、弱コンパクト性と呼ばれる。 本項では弱位相の関連概念である*弱位相についても述べる。 (ja)
  • 弱位相(じゃくいそう、英: weak topology)とは、ノルム空間X上に定義される位相の一つである。体K上のノルム空間にはノルムから定まる位相(ノルム位相。弱位相と区別するため強位相とも呼ばれる)があるが、弱位相はこれよりも弱い(強くない)位相であり、X上のK値有界線形写像(すなわちXの共役空間X*の元)が全て連続になる最弱な位相である。なお弱位相は位相空間論におけるの特別な場合に当たる。 強位相に関するものと区別するため、弱位相に関する連続性、収束性、コンパクト性はそれぞれ弱連続性、弱収束性、弱コンパクト性と呼ばれる。 本項では弱位相の関連概念である*弱位相についても述べる。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3331458 (xsd:integer)
dbo:wikiPageLength
  • 13072 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91982795 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 弱位相(じゃくいそう、英: weak topology)とは、ノルム空間X上に定義される位相の一つである。体K上のノルム空間にはノルムから定まる位相(ノルム位相。弱位相と区別するため強位相とも呼ばれる)があるが、弱位相はこれよりも弱い(強くない)位相であり、X上のK値有界線形写像(すなわちXの共役空間X*の元)が全て連続になる最弱な位相である。なお弱位相は位相空間論におけるの特別な場合に当たる。 強位相に関するものと区別するため、弱位相に関する連続性、収束性、コンパクト性はそれぞれ弱連続性、弱収束性、弱コンパクト性と呼ばれる。 本項では弱位相の関連概念である*弱位相についても述べる。 (ja)
  • 弱位相(じゃくいそう、英: weak topology)とは、ノルム空間X上に定義される位相の一つである。体K上のノルム空間にはノルムから定まる位相(ノルム位相。弱位相と区別するため強位相とも呼ばれる)があるが、弱位相はこれよりも弱い(強くない)位相であり、X上のK値有界線形写像(すなわちXの共役空間X*の元)が全て連続になる最弱な位相である。なお弱位相は位相空間論におけるの特別な場合に当たる。 強位相に関するものと区別するため、弱位相に関する連続性、収束性、コンパクト性はそれぞれ弱連続性、弱収束性、弱コンパクト性と呼ばれる。 本項では弱位相の関連概念である*弱位相についても述べる。 (ja)
rdfs:label
  • 弱位相 (ja)
  • 弱位相 (ja)
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of