数学の分野において、ある可測空間 (Ω, Σ) 上で定義される二つの正(あるいは符号付または複素)測度 μ および ν が特異(とくい、英: singular)であるとは、Σ 内の二つの互いに素な集合 A と B で、その合併が Ω であり、B のすべての可測部分集合上で μ がゼロとなり、A のすべての可測部分集合上で ν がゼロとなるようなものが存在することを言う。この関係は と表される。 ルベーグの分解定理の改良されたものにおいては、特異測度をある特異連続測度と離散測度に区分している。例としては下記を参照されたい。

Property Value
dbo:abstract
  • 数学の分野において、ある可測空間 (Ω, Σ) 上で定義される二つの正(あるいは符号付または複素)測度 μ および ν が特異(とくい、英: singular)であるとは、Σ 内の二つの互いに素な集合 A と B で、その合併が Ω であり、B のすべての可測部分集合上で μ がゼロとなり、A のすべての可測部分集合上で ν がゼロとなるようなものが存在することを言う。この関係は と表される。 ルベーグの分解定理の改良されたものにおいては、特異測度をある特異連続測度と離散測度に区分している。例としては下記を参照されたい。 (ja)
  • 数学の分野において、ある可測空間 (Ω, Σ) 上で定義される二つの正(あるいは符号付または複素)測度 μ および ν が特異(とくい、英: singular)であるとは、Σ 内の二つの互いに素な集合 A と B で、その合併が Ω であり、B のすべての可測部分集合上で μ がゼロとなり、A のすべての可測部分集合上で ν がゼロとなるようなものが存在することを言う。この関係は と表される。 ルベーグの分解定理の改良されたものにおいては、特異測度をある特異連続測度と離散測度に区分している。例としては下記を参照されたい。 (ja)
dbo:wikiPageID
  • 2885758 (xsd:integer)
dbo:wikiPageLength
  • 1677 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 57469573 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:id
  • 34002 (xsd:integer)
prop-ja:title
  • singular measure (ja)
  • singular measure (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学の分野において、ある可測空間 (Ω, Σ) 上で定義される二つの正(あるいは符号付または複素)測度 μ および ν が特異(とくい、英: singular)であるとは、Σ 内の二つの互いに素な集合 A と B で、その合併が Ω であり、B のすべての可測部分集合上で μ がゼロとなり、A のすべての可測部分集合上で ν がゼロとなるようなものが存在することを言う。この関係は と表される。 ルベーグの分解定理の改良されたものにおいては、特異測度をある特異連続測度と離散測度に区分している。例としては下記を参照されたい。 (ja)
  • 数学の分野において、ある可測空間 (Ω, Σ) 上で定義される二つの正(あるいは符号付または複素)測度 μ および ν が特異(とくい、英: singular)であるとは、Σ 内の二つの互いに素な集合 A と B で、その合併が Ω であり、B のすべての可測部分集合上で μ がゼロとなり、A のすべての可測部分集合上で ν がゼロとなるようなものが存在することを言う。この関係は と表される。 ルベーグの分解定理の改良されたものにおいては、特異測度をある特異連続測度と離散測度に区分している。例としては下記を参照されたい。 (ja)
rdfs:label
  • 特異測度 (ja)
  • 特異測度 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of