Property |
Value |
dbo:abstract
|
- 数学の分野において、ある可測空間 (Ω, Σ) 上で定義される二つの正(あるいは符号付または複素)測度 μ および ν が特異(とくい、英: singular)であるとは、Σ 内の二つの互いに素な集合 A と B で、その合併が Ω であり、B のすべての可測部分集合上で μ がゼロとなり、A のすべての可測部分集合上で ν がゼロとなるようなものが存在することを言う。この関係は と表される。 ルベーグの分解定理の改良されたものにおいては、特異測度をある特異連続測度と離散測度に区分している。例としては下記を参照されたい。 (ja)
- 数学の分野において、ある可測空間 (Ω, Σ) 上で定義される二つの正(あるいは符号付または複素)測度 μ および ν が特異(とくい、英: singular)であるとは、Σ 内の二つの互いに素な集合 A と B で、その合併が Ω であり、B のすべての可測部分集合上で μ がゼロとなり、A のすべての可測部分集合上で ν がゼロとなるようなものが存在することを言う。この関係は と表される。 ルベーグの分解定理の改良されたものにおいては、特異測度をある特異連続測度と離散測度に区分している。例としては下記を参照されたい。 (ja)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 1677 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-ja:id
| |
prop-ja:title
|
- singular measure (ja)
- singular measure (ja)
|
prop-ja:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 数学の分野において、ある可測空間 (Ω, Σ) 上で定義される二つの正(あるいは符号付または複素)測度 μ および ν が特異(とくい、英: singular)であるとは、Σ 内の二つの互いに素な集合 A と B で、その合併が Ω であり、B のすべての可測部分集合上で μ がゼロとなり、A のすべての可測部分集合上で ν がゼロとなるようなものが存在することを言う。この関係は と表される。 ルベーグの分解定理の改良されたものにおいては、特異測度をある特異連続測度と離散測度に区分している。例としては下記を参照されたい。 (ja)
- 数学の分野において、ある可測空間 (Ω, Σ) 上で定義される二つの正(あるいは符号付または複素)測度 μ および ν が特異(とくい、英: singular)であるとは、Σ 内の二つの互いに素な集合 A と B で、その合併が Ω であり、B のすべての可測部分集合上で μ がゼロとなり、A のすべての可測部分集合上で ν がゼロとなるようなものが存在することを言う。この関係は と表される。 ルベーグの分解定理の改良されたものにおいては、特異測度をある特異連続測度と離散測度に区分している。例としては下記を参照されたい。 (ja)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |