相関係数(そうかんけいすう、英: correlation coefficient)とは、2つのデータまたは確率変数の間にある線形な関係の強弱を測る指標である。相関係数は無次元量で、−1以上1以下の実数に値をとる。相関係数が正のとき確率変数には正の相関が、負のとき確率変数には負の相関があるという。また相関係数が0のとき確率変数は無相関であるという。 たとえば、先進諸国の失業率と実質経済成長率は強い負の相関関係にあり、相関係数を求めれば−1に近い数字になる。 相関係数が ±1 に値をとることは、2つのデータ(確率変数)が線形の関係にあるときに限る。また2つの確率変数が互いに独立ならば相関係数は 0 となるが、逆は成り立たない。 普通、単に相関係数といえばピアソンの積率相関係数を指す。ピアソン積率相関係数の検定は偏差の正規分布を仮定する(パラメトリック)方法であるが、他にこのような仮定を置かないノンパラメトリックな方法として、スピアマンの順位相関係数、ケンドールの順位相関係数なども一般に用いられる。

Property Value
dbo:abstract
  • 相関係数(そうかんけいすう、英: correlation coefficient)とは、2つのデータまたは確率変数の間にある線形な関係の強弱を測る指標である。相関係数は無次元量で、−1以上1以下の実数に値をとる。相関係数が正のとき確率変数には正の相関が、負のとき確率変数には負の相関があるという。また相関係数が0のとき確率変数は無相関であるという。 たとえば、先進諸国の失業率と実質経済成長率は強い負の相関関係にあり、相関係数を求めれば−1に近い数字になる。 相関係数が ±1 に値をとることは、2つのデータ(確率変数)が線形の関係にあるときに限る。また2つの確率変数が互いに独立ならば相関係数は 0 となるが、逆は成り立たない。 普通、単に相関係数といえばピアソンの積率相関係数を指す。ピアソン積率相関係数の検定は偏差の正規分布を仮定する(パラメトリック)方法であるが、他にこのような仮定を置かないノンパラメトリックな方法として、スピアマンの順位相関係数、ケンドールの順位相関係数なども一般に用いられる。 (ja)
  • 相関係数(そうかんけいすう、英: correlation coefficient)とは、2つのデータまたは確率変数の間にある線形な関係の強弱を測る指標である。相関係数は無次元量で、−1以上1以下の実数に値をとる。相関係数が正のとき確率変数には正の相関が、負のとき確率変数には負の相関があるという。また相関係数が0のとき確率変数は無相関であるという。 たとえば、先進諸国の失業率と実質経済成長率は強い負の相関関係にあり、相関係数を求めれば−1に近い数字になる。 相関係数が ±1 に値をとることは、2つのデータ(確率変数)が線形の関係にあるときに限る。また2つの確率変数が互いに独立ならば相関係数は 0 となるが、逆は成り立たない。 普通、単に相関係数といえばピアソンの積率相関係数を指す。ピアソン積率相関係数の検定は偏差の正規分布を仮定する(パラメトリック)方法であるが、他にこのような仮定を置かないノンパラメトリックな方法として、スピアマンの順位相関係数、ケンドールの順位相関係数なども一般に用いられる。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 198285 (xsd:integer)
dbo:wikiPageLength
  • 8783 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 90240461 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 相関係数(そうかんけいすう、英: correlation coefficient)とは、2つのデータまたは確率変数の間にある線形な関係の強弱を測る指標である。相関係数は無次元量で、−1以上1以下の実数に値をとる。相関係数が正のとき確率変数には正の相関が、負のとき確率変数には負の相関があるという。また相関係数が0のとき確率変数は無相関であるという。 たとえば、先進諸国の失業率と実質経済成長率は強い負の相関関係にあり、相関係数を求めれば−1に近い数字になる。 相関係数が ±1 に値をとることは、2つのデータ(確率変数)が線形の関係にあるときに限る。また2つの確率変数が互いに独立ならば相関係数は 0 となるが、逆は成り立たない。 普通、単に相関係数といえばピアソンの積率相関係数を指す。ピアソン積率相関係数の検定は偏差の正規分布を仮定する(パラメトリック)方法であるが、他にこのような仮定を置かないノンパラメトリックな方法として、スピアマンの順位相関係数、ケンドールの順位相関係数なども一般に用いられる。 (ja)
  • 相関係数(そうかんけいすう、英: correlation coefficient)とは、2つのデータまたは確率変数の間にある線形な関係の強弱を測る指標である。相関係数は無次元量で、−1以上1以下の実数に値をとる。相関係数が正のとき確率変数には正の相関が、負のとき確率変数には負の相関があるという。また相関係数が0のとき確率変数は無相関であるという。 たとえば、先進諸国の失業率と実質経済成長率は強い負の相関関係にあり、相関係数を求めれば−1に近い数字になる。 相関係数が ±1 に値をとることは、2つのデータ(確率変数)が線形の関係にあるときに限る。また2つの確率変数が互いに独立ならば相関係数は 0 となるが、逆は成り立たない。 普通、単に相関係数といえばピアソンの積率相関係数を指す。ピアソン積率相関係数の検定は偏差の正規分布を仮定する(パラメトリック)方法であるが、他にこのような仮定を置かないノンパラメトリックな方法として、スピアマンの順位相関係数、ケンドールの順位相関係数なども一般に用いられる。 (ja)
rdfs:label
  • 相関係数 (ja)
  • 相関係数 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of