数学の各分野、特に数論および組合せ論において、正の整数 n の分割(ぶんかつ、英: partition)あるいは整分割 (integer partition) とは、与えられた正整数 n を正整数の和として表す方法をいう。ただし、和の因子(summand; 被加数)の順番のみが異なる分割は同じ分割とみなされる(順序をも考慮する場合は、順序つき分割または、分割ではなく (composition) と呼ばれる概念となる)。 例えば 4 の異なる分割は次の五通りである。 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1. このとき、順序を考慮した合成 1 + 3 は分割としては 3 + 1 と同じであり、同様に合成としては異なる 1 + 2 + 1 および 1 + 1 + 2 は分割としては 2 + 1 + 1 と同じである。 分割の各因子は部分または成分 (part) などとも呼ばれる。また、各正整数 n に対して n の分割の総数を与える函数を p(n) であらわし、n の分割数 (partition function) と呼ぶ。これによれば上記は p(4) = 5 と表せる。なお、p が n の分割であることを p ⊢ n で表すことがある。

Property Value
dbo:abstract
  • 数学の各分野、特に数論および組合せ論において、正の整数 n の分割(ぶんかつ、英: partition)あるいは整分割 (integer partition) とは、与えられた正整数 n を正整数の和として表す方法をいう。ただし、和の因子(summand; 被加数)の順番のみが異なる分割は同じ分割とみなされる(順序をも考慮する場合は、順序つき分割または、分割ではなく (composition) と呼ばれる概念となる)。 例えば 4 の異なる分割は次の五通りである。 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1. このとき、順序を考慮した合成 1 + 3 は分割としては 3 + 1 と同じであり、同様に合成としては異なる 1 + 2 + 1 および 1 + 1 + 2 は分割としては 2 + 1 + 1 と同じである。 分割の各因子は部分または成分 (part) などとも呼ばれる。また、各正整数 n に対して n の分割の総数を与える函数を p(n) であらわし、n の分割数 (partition function) と呼ぶ。これによれば上記は p(4) = 5 と表せる。なお、p が n の分割であることを p ⊢ n で表すことがある。 自然数の分割を図示する方法としてヤング図形やがある。これらは数学や物理学のいくつかの分野で用いられるが、特に対称多項式や対称群の研究あるいは一般の群の表現論などが含まれる。 (ja)
  • 数学の各分野、特に数論および組合せ論において、正の整数 n の分割(ぶんかつ、英: partition)あるいは整分割 (integer partition) とは、与えられた正整数 n を正整数の和として表す方法をいう。ただし、和の因子(summand; 被加数)の順番のみが異なる分割は同じ分割とみなされる(順序をも考慮する場合は、順序つき分割または、分割ではなく (composition) と呼ばれる概念となる)。 例えば 4 の異なる分割は次の五通りである。 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1. このとき、順序を考慮した合成 1 + 3 は分割としては 3 + 1 と同じであり、同様に合成としては異なる 1 + 2 + 1 および 1 + 1 + 2 は分割としては 2 + 1 + 1 と同じである。 分割の各因子は部分または成分 (part) などとも呼ばれる。また、各正整数 n に対して n の分割の総数を与える函数を p(n) であらわし、n の分割数 (partition function) と呼ぶ。これによれば上記は p(4) = 5 と表せる。なお、p が n の分割であることを p ⊢ n で表すことがある。 自然数の分割を図示する方法としてヤング図形やがある。これらは数学や物理学のいくつかの分野で用いられるが、特に対称多項式や対称群の研究あるいは一般の群の表現論などが含まれる。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1228255 (xsd:integer)
dbo:wikiPageLength
  • 13872 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 78192938 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:title
  • Partition (ja)
  • Partition (ja)
prop-ja:urlname
  • Partition (ja)
  • Partition (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学の各分野、特に数論および組合せ論において、正の整数 n の分割(ぶんかつ、英: partition)あるいは整分割 (integer partition) とは、与えられた正整数 n を正整数の和として表す方法をいう。ただし、和の因子(summand; 被加数)の順番のみが異なる分割は同じ分割とみなされる(順序をも考慮する場合は、順序つき分割または、分割ではなく (composition) と呼ばれる概念となる)。 例えば 4 の異なる分割は次の五通りである。 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1. このとき、順序を考慮した合成 1 + 3 は分割としては 3 + 1 と同じであり、同様に合成としては異なる 1 + 2 + 1 および 1 + 1 + 2 は分割としては 2 + 1 + 1 と同じである。 分割の各因子は部分または成分 (part) などとも呼ばれる。また、各正整数 n に対して n の分割の総数を与える函数を p(n) であらわし、n の分割数 (partition function) と呼ぶ。これによれば上記は p(4) = 5 と表せる。なお、p が n の分割であることを p ⊢ n で表すことがある。 (ja)
  • 数学の各分野、特に数論および組合せ論において、正の整数 n の分割(ぶんかつ、英: partition)あるいは整分割 (integer partition) とは、与えられた正整数 n を正整数の和として表す方法をいう。ただし、和の因子(summand; 被加数)の順番のみが異なる分割は同じ分割とみなされる(順序をも考慮する場合は、順序つき分割または、分割ではなく (composition) と呼ばれる概念となる)。 例えば 4 の異なる分割は次の五通りである。 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1. このとき、順序を考慮した合成 1 + 3 は分割としては 3 + 1 と同じであり、同様に合成としては異なる 1 + 2 + 1 および 1 + 1 + 2 は分割としては 2 + 1 + 1 と同じである。 分割の各因子は部分または成分 (part) などとも呼ばれる。また、各正整数 n に対して n の分割の総数を与える函数を p(n) であらわし、n の分割数 (partition function) と呼ぶ。これによれば上記は p(4) = 5 と表せる。なお、p が n の分割であることを p ⊢ n で表すことがある。 (ja)
rdfs:label
  • 自然数の分割 (ja)
  • 自然数の分割 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of