Property |
Value |
dbo:abstract
|
- 陳の定理(英: Chen's theorem)とは、十分大きな偶数はある素数 p と高々2つの素数の積である整数 n の和 p + n の形で表せるという定理である。この定理は中華人民共和国の数学者、陳景潤が1966年に証明した。その後、1973年により詳しい証明が与えられた。陳の元々の証明は、P.M.ロスによってより簡略化された。陳の定理はゴールドバッハ予想への巨大な足跡であり、篩法の特筆すべき成果である。 陳が1973年に発表した論文では、ほぼ同一の証明により二つの定理が導かれている。第一の定理は上述したゴールドバッハ予想に関するものである。第二の定理は双子素数に関するもので、p + 2 が高々2つの素数の積である素数 p は無数に存在するという定理である。 Ying Chun Caiは2002年に次の命題を証明をした。 「十分大きな自然数 n は、n0.95 以下である素数と、高々2つの素数の積である自然数の和として表せる」 (ja)
- 陳の定理(英: Chen's theorem)とは、十分大きな偶数はある素数 p と高々2つの素数の積である整数 n の和 p + n の形で表せるという定理である。この定理は中華人民共和国の数学者、陳景潤が1966年に証明した。その後、1973年により詳しい証明が与えられた。陳の元々の証明は、P.M.ロスによってより簡略化された。陳の定理はゴールドバッハ予想への巨大な足跡であり、篩法の特筆すべき成果である。 陳が1973年に発表した論文では、ほぼ同一の証明により二つの定理が導かれている。第一の定理は上述したゴールドバッハ予想に関するものである。第二の定理は双子素数に関するもので、p + 2 が高々2つの素数の積である素数 p は無数に存在するという定理である。 Ying Chun Caiは2002年に次の命題を証明をした。 「十分大きな自然数 n は、n0.95 以下である素数と、高々2つの素数の積である自然数の和として表せる」 (ja)
|
dbo:thumbnail
| |
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2614 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:title
|
- Chen's Theorem (ja)
- Chen's Theorem (ja)
|
prop-en:urlname
|
- ChensTheorem (ja)
- ChensTheorem (ja)
|
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 陳の定理(英: Chen's theorem)とは、十分大きな偶数はある素数 p と高々2つの素数の積である整数 n の和 p + n の形で表せるという定理である。この定理は中華人民共和国の数学者、陳景潤が1966年に証明した。その後、1973年により詳しい証明が与えられた。陳の元々の証明は、P.M.ロスによってより簡略化された。陳の定理はゴールドバッハ予想への巨大な足跡であり、篩法の特筆すべき成果である。 陳が1973年に発表した論文では、ほぼ同一の証明により二つの定理が導かれている。第一の定理は上述したゴールドバッハ予想に関するものである。第二の定理は双子素数に関するもので、p + 2 が高々2つの素数の積である素数 p は無数に存在するという定理である。 Ying Chun Caiは2002年に次の命題を証明をした。 「十分大きな自然数 n は、n0.95 以下である素数と、高々2つの素数の積である自然数の和として表せる」 (ja)
- 陳の定理(英: Chen's theorem)とは、十分大きな偶数はある素数 p と高々2つの素数の積である整数 n の和 p + n の形で表せるという定理である。この定理は中華人民共和国の数学者、陳景潤が1966年に証明した。その後、1973年により詳しい証明が与えられた。陳の元々の証明は、P.M.ロスによってより簡略化された。陳の定理はゴールドバッハ予想への巨大な足跡であり、篩法の特筆すべき成果である。 陳が1973年に発表した論文では、ほぼ同一の証明により二つの定理が導かれている。第一の定理は上述したゴールドバッハ予想に関するものである。第二の定理は双子素数に関するもので、p + 2 が高々2つの素数の積である素数 p は無数に存在するという定理である。 Ying Chun Caiは2002年に次の命題を証明をした。 「十分大きな自然数 n は、n0.95 以下である素数と、高々2つの素数の積である自然数の和として表せる」 (ja)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |