Near-Optimal Algorithms for Private Online Optimization in the Realizable Regime

Hilal Asi, Vitaly Feldman, Tomer Koren, Kunal Talwar
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:1107-1120, 2023.

Abstract

We consider online learning problems in the realizable setting, where there is a zero-loss solution, and propose new Differentially Private (DP) algorithms that obtain near-optimal regret bounds. For the problem of online prediction from experts, we design new algorithms that obtain near-optimal regret $O \big( \varepsilon^{-1} \mathsf{poly}(\log{d}) \big)$ where $d$ is the number of experts. This significantly improves over the best existing regret bounds for the DP non-realizable setting which are $O \big( \varepsilon^{-1} \min\big\{d, \sqrt{T\log d}\big\} \big)$. We also develop an adaptive algorithm for the small-loss setting with regret $(L^\star+ \varepsilon^{-1}) \cdot O(\mathsf{poly}(\log{d}))$ where $L^\star$ is the total loss of the best expert. Additionally, we consider DP online convex optimization in the realizable setting and propose an algorithm with near-optimal regret $O \big(\varepsilon^{-1} \mathsf{poly}(d) \big)$, as well as an algorithm for the smooth case with regret $O \big( (\sqrt{Td}/\varepsilon)^{2/3} \big)$, both significantly improving over existing bounds in the non-realizable regime.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-asi23a, title = {Near-Optimal Algorithms for Private Online Optimization in the Realizable Regime}, author = {Asi, Hilal and Feldman, Vitaly and Koren, Tomer and Talwar, Kunal}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {1107--1120}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/asi23a/asi23a.pdf}, url = {https://proceedings.mlr.press/v202/asi23a.html}, abstract = {We consider online learning problems in the realizable setting, where there is a zero-loss solution, and propose new Differentially Private (DP) algorithms that obtain near-optimal regret bounds. For the problem of online prediction from experts, we design new algorithms that obtain near-optimal regret $O \big( \varepsilon^{-1} \mathsf{poly}(\log{d}) \big)$ where $d$ is the number of experts. This significantly improves over the best existing regret bounds for the DP non-realizable setting which are $O \big( \varepsilon^{-1} \min\big\{d, \sqrt{T\log d}\big\} \big)$. We also develop an adaptive algorithm for the small-loss setting with regret $(L^\star+ \varepsilon^{-1}) \cdot O(\mathsf{poly}(\log{d}))$ where $L^\star$ is the total loss of the best expert. Additionally, we consider DP online convex optimization in the realizable setting and propose an algorithm with near-optimal regret $O \big(\varepsilon^{-1} \mathsf{poly}(d) \big)$, as well as an algorithm for the smooth case with regret $O \big( (\sqrt{Td}/\varepsilon)^{2/3} \big)$, both significantly improving over existing bounds in the non-realizable regime.} }
Endnote
%0 Conference Paper %T Near-Optimal Algorithms for Private Online Optimization in the Realizable Regime %A Hilal Asi %A Vitaly Feldman %A Tomer Koren %A Kunal Talwar %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-asi23a %I PMLR %P 1107--1120 %U https://proceedings.mlr.press/v202/asi23a.html %V 202 %X We consider online learning problems in the realizable setting, where there is a zero-loss solution, and propose new Differentially Private (DP) algorithms that obtain near-optimal regret bounds. For the problem of online prediction from experts, we design new algorithms that obtain near-optimal regret $O \big( \varepsilon^{-1} \mathsf{poly}(\log{d}) \big)$ where $d$ is the number of experts. This significantly improves over the best existing regret bounds for the DP non-realizable setting which are $O \big( \varepsilon^{-1} \min\big\{d, \sqrt{T\log d}\big\} \big)$. We also develop an adaptive algorithm for the small-loss setting with regret $(L^\star+ \varepsilon^{-1}) \cdot O(\mathsf{poly}(\log{d}))$ where $L^\star$ is the total loss of the best expert. Additionally, we consider DP online convex optimization in the realizable setting and propose an algorithm with near-optimal regret $O \big(\varepsilon^{-1} \mathsf{poly}(d) \big)$, as well as an algorithm for the smooth case with regret $O \big( (\sqrt{Td}/\varepsilon)^{2/3} \big)$, both significantly improving over existing bounds in the non-realizable regime.
APA
Asi, H., Feldman, V., Koren, T. & Talwar, K.. (2023). Near-Optimal Algorithms for Private Online Optimization in the Realizable Regime. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:1107-1120 Available from https://proceedings.mlr.press/v202/asi23a.html.

Related Material