Momento angular da luz
O momento angular da luz é uma grandeza vetorial que expressa a quantidade de rotação dinâmica presente no campo eletromagnético da luz. Enquanto viaja aproximadamente em linha reta, um feixe de luz também pode ser rotativo (ou “girativo”, ou “torcido”) em torno do seu próprio eixo. Essa rotação, embora não seja visível a olho nu, pode ser revelada pela interação do feixe de luz com a matéria.[1]
Pesquisa
[editar | editar código-fonte]Em 2019, os cientistas transferiram e verificaram com sucesso a base do momento angular da informação quântica da luz do laser para um elétron preso em um ponto quântico. Este trabalho foi um passo para a efectivação de computadores quânticos interconectados.[2]
Troca de spin e momento angular orbital com matéria
[editar | editar código-fonte]Quando um feixe de luz que transporta momento angular diferente de zero colide com uma partícula absorvente, seu momento angular pode ser transferido para a partícula, configurando-a assim em movimento rotacional. Isso ocorre com a interação SAM e a OAM.[3] O SAM dará origem a uma rotação da partícula em torno do seu próprio centro, isto é, a um giro de partículas. OAM, em vez disso, gerará uma revolução da partícula ao redor do eixo do feixe.[4][5][6] Esses fenômenos são esquematicamente ilustrados na figura.
Placa de Fase Espiral (SPP)
[editar | editar código-fonte]No limite paraxial, o OAM de um feixe de luz pode ser trocado por um material que possui uma heterogeneidade espacial transversal. Por exemplo, um feixe de luz pode adquirir OAM cruzando uma placa de fase em espiral, com uma espessura não homogênea (ver figura).[7]
Holograma de Forquilha
[editar | editar código-fonte]Uma abordagem mais conveniente para gerar OAM é baseada no uso de difração em um holograma tipo garfo ou forcado (ver figura).[8][9][10][11] Hologramas também podem ser gerados dinamicamente sob o controle de um computador usando um modulador de luz espacial.[12]
Placa Q
[editar | editar código-fonte]Outro método para gerar OAM é baseado no acoplamento SAM-OAM que pode ocorrer em um meio que é anisotrópico e não homogêneo. Em particular, a chamada placa-q é um dispositivo, atualmente realizado usando cristais líquidos, polímeros ou redes de sub-comprimento de onda, que podem gerar OAM através da exploração de uma mudança de sinal SAM. Neste caso, o sinal OAM é controlado pela polarização da entrada.[13][14][15]
Conversores de Modo Cilíndrico
[editar | editar código-fonte]OAM também pode ser gerado convertendo um feixe de Hermite-Gaussiano em um Laguerre-Gaussiano usando um sistema astigmático com duas lentes cilíndricas bem alinhadas colocadas a uma distância específica (veja figura) para introduzir uma fase relativa bem definida entre feixes hermite-gaussianas horizontais e verticais.[16]
Referências
- ↑ Stewart, A.M. «Angular momentum of light» (PDF). Cornell University, the Simons Foundation. Consultado em 29 de julho de 2019
- ↑ «Travelling towards a quantum internet at light speed». Tech Explorist (em inglês). 29 de julho de 2019. Consultado em 29 de julho de 2019
- ↑ Andrews, David L.; Babiker, Mohamed (2013). The Angular Momentum of Light (em inglês). [S.l.]: Cambridge University Press. ISBN 9781107006348
- ↑ He, H.; Friese, M.; Heckenberg, N.; Rubinsztein-Dunlop, H. (1995). «Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity» (PDF). Physical Review Letters. 75 (5): 826–829. Bibcode:1995PhRvL..75..826H. PMID 10060128. doi:10.1103/PhysRevLett.75.826
- ↑ Simpson, N. B.; Dholakia, K.; Allen, L.; Padgett, M. J. (1997). «Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner». Optics Letters. 22 (1): 52–4. Bibcode:1997OptL...22...52S. CiteSeerX 10.1.1.205.5751. PMID 18183100. doi:10.1364/OL.22.000052
- ↑ O'Neil, A. T.; MacVicar, I.; Allen, L.; Padgett, M. (2002). «Intrinsic and extrinsic nature of the orbital angular momentum of a light beam». Physical Review Letters. 88 (5): 053601. Bibcode:2002PhRvL..88e3601O. PMID 11863722. doi:10.1103/PhysRevLett.88.053601
- ↑ Beijersbergen, M. W.; Coerwinkel, R.P.C.; Kristensen, M.; Woerdman, J.P. (1994). «Helical-wavefront laser beams produced with a spiral phase plate». Optics Communications. 112 (5–6): 321. Bibcode:1994OptCo.112..321B. doi:10.1016/0030-4018(94)90638-6
- ↑ Bazhenov, V.Yu.; Vasnetsov, M.V.; Soskin, M.S. (1990). «Laser beams with screw dislocations in their wavefronts» (PDF). JETP Letters. 52 (8): 429–431
- ↑ Bazhenov, V.Yu.; Soskin, M.S.; Vasnetsov, M.V. (1992). «Screw Dislocations in Light Wavefronts». Journal of Modern Optics. 39 (5): 985. Bibcode:1992JMOp...39..985B. doi:10.1080/09500349214551011
- ↑ Heckenberg, N. R.; McDuff, R.; Smith, C. P.; Rubinsztein-Dunlop, H.; Wegener, M. J. (1992). «Laser beams with phase singularities». Optical and Quantum Electronics. 24 (9): S951. doi:10.1007/BF01588597
- ↑ Soskin, M.; Gorshkov, V.; Vasnetsov, M.; Malos, J.; Heckenberg, N. (1997). «Topological charge and angular momentum of light beams carrying optical vortices» (PDF). Phys. Rev. A. 56 (5): 4064. Bibcode:1997PhRvA..56.4064S. doi:10.1103/PhysRevA.56.4064
- ↑ Heckenberg, N. R.; McDuff, R; Smith, CP; White, AG (1992). «Generation of optical phase singularities by computer-generated holograms». Optics Letters. 17 (3): 221. Bibcode:1992OptL...17..221H. CiteSeerX 10.1.1.472.1077. PMID 19784282. doi:10.1364/OL.17.000221
- ↑ Marrucci, L.; Manzo, C.; Paparo, D. (2006). «Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media». Physical Review Letters. 96 (16): 163905. Bibcode:2006PhRvL..96p3905M. PMID 16712234. arXiv:0712.0099. doi:10.1103/PhysRevLett.96.163905
- ↑ Karimi, E.; Piccirillo, Bruno; Nagali, Eleonora; Marrucci, Lorenzo; Santamato, Enrico (2009). «Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates». Applied Physics Letters. 94 (23): 231124. Bibcode:2009ApPhL..94w1124K. arXiv:0905.0562. doi:10.1063/1.3154549
- ↑ Gecevicius, M.; Drevinskas, R.; Beresna, M.; Kazansky, P.G. (2014). «Single beam optical vortex tweezers with tunable orbital angular momentum». Applied Physics Letters. 104 (23): 231110. Bibcode:2014ApPhL.104w1110G. doi:10.1063/1.4882418
- ↑ Allen, L.; Beijersbergen, M.; Spreeuw, R.; Woerdman, J. (1992). «Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes». Phys. Rev. A. 45 (11): 8185–8189. Bibcode:1992PhRvA..45.8185A. PMID 9906912. doi:10.1103/PhysRevA.45.8185