Design of Flexible FeCoSiB/ZnO Thin-Film Multiferroic Module for Low-Frequency Energy Harvesting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of FeCoSiB/ZnO Laminates on Substrates
2.2. Design of Double Cantilevered Flexible ME Thin-Film Module
2.3. Characterization of ME Thin-Film
3. Results
3.1. ME Performance of Single Cantilevered FeCoSiB/ZnO Thin-Film Generator
3.2. Demonstration of Double Cantilevered Flexible ME Module for Low-Frequency Energy Harvesting
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, D.; Shi, B.; Ouyang, H.; Fan, Y.; Wang, Z.L.; Chen, Z.-M.; Li, Z. A 25-year bibliometric study of implantable energy harvesters and self-powered implantable medical electronics researches. Mater. Today Energy 2020, 16, 100386. [Google Scholar] [CrossRef]
- Kim, J.; Son, D.; Lee, M.; Song, C.; Song, J.-K.; Koo, J.H.; Lee, D.J.; Shim, H.J.; Kim, J.H. A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement. Sci. Adv. 2016, 2, e1501101. [Google Scholar] [CrossRef] [Green Version]
- Pang, C.; Lee, C.; Suh, K.-Y. Recent advances in flexible sensors for wearable and implantable devices. J. Appl. Polym. Sci. 2013, 130, 1429–1441. [Google Scholar] [CrossRef]
- Lü, C.; Zhang, Y.; Zhang, H.; Zhang, Z.; Shen, M.; Chen, Y. Generalized optimization method for energy conversion and storage efficiency of nanoscale flexible piezoelectric energy harvesters. Energy Convers. Manag. 2019, 182, 34–40. [Google Scholar] [CrossRef]
- Forrest, S.R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004, 428, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Yang, Q.; Wang, D.; Luo, W.; Wang, W.; Lin, M.; Liang, D.; Luo, Q. A wearable pyroelectric nanogenerator and self-powered breathing sensor. Nano Energy 2017, 38, 147–154. [Google Scholar] [CrossRef]
- Sekitani, T.; Yokota, T.; Zschieschang, U.; Klauk, H.; Bauer, S.; Takeuchi, K.; Takamiya, M.; Sakurai, T.; Someya, T. Organic nonvolatile memory transistors for flexible sensor arrays. Science 2009, 326, 1516–1519. [Google Scholar] [CrossRef] [PubMed]
- O’Handley, R.C.; Huang, J.K.; Bono, D.C.; Simon, J. Improved wireless, transcutaneous power transmission for in vivo applications. IEEE Sens. J. 2008, 8, 57–62. [Google Scholar] [CrossRef]
- Hwang, G.T.; Byun, M.; Jeong, C.K.; Lee, K.J. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications. Adv. Healthc. Mater. 2015, 4, 646–658. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Park, K.S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef]
- Niu, S.; Wang, X.; Yi, F.; Zhou, Y.S.; Wang, Z.L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 2015, 6, 8975. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Tang, Q.; Wang, Z.L.; Li, Z. Self-powered cardiovascular electronic devices and systems. Nat. Rev. Cardiol. 2021, 18, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.-R.; Tian, Z.-Q.; Lin Wang, Z. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Wang, X.; Song, J.; Liu, J.; Wang, Z.L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Li, W.; Li, S.; Wang, Y.; Xiao, W. Reliability assessment of photovoltaic power systems: Review of current status and future perspectives. Appl. Energy 2013, 104, 822–833. [Google Scholar] [CrossRef]
- Morozovska, A.N.; Eliseev, E.A.; Svechnikov, G.S.; Kalinin, S.V. Nanoscale electromechanics of paraelectric materials with mobile charges: Size effects and nonlinearity of electromechanical response of SrTiO3films. Phys. Rev. B 2011, 84, 045402. [Google Scholar] [CrossRef] [Green Version]
- Onuta, T.-D.; Wang, Y.; Long, C.J.; Takeuchi, I. Energy harvesting properties of all-thin-film multiferroic cantilevers. Appl. Phys. Lett. 2011, 99, 203506. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Kavaldzhiev, M.N.; Kosel, J. Flexible magnetoimpedance sensor. J. Magn. Magn. Mater. 2015, 378, 499–505. [Google Scholar] [CrossRef]
- Gaspar, J.; Fonseca, H.; Paz, E.; Martins, M.; Valadeiro, J.; Cardoso, S.; Ferreira, R.; Freitas, P.P. Flexible magnetoresistive sensors designed for conformal integration. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar] [CrossRef]
- Pan, C.T.; Liu, Z.H.; Chen, Y.C. Study of broad bandwidth vibrational energy harvesting system with optimum thickness of PET substrate. Curr. Appl. Phys. 2012, 12, 684–696. [Google Scholar] [CrossRef]
- Yang, Y.; Jung, J.H.; Yun, B.K.; Zhang, F.; Pradel, K.C.; Guo, W.; Wang, Z.L. Flexible pyroelectric nanogenerators using a composite structure of lead-free KNbO(3) nanowires. Adv. Mater. 2012, 24, 5357–5362. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.G.; Wang, X.W.; Wu, Y.J.; Zeng, M.; Wang, Y.; Jiang, H.; Zhou, W.Q.; Wang, G.H.; Liu, J.M. Magnetoelectric CoFe2O4–Pb(Zr,Ti)O3 composite thin films derived by a sol-gel process. Appl. Phys. Lett. 2005, 86, 122501. [Google Scholar] [CrossRef]
- Ryu, H.; Murugavel, P.; Lee, J.H.; Chae, S.C.; Noh, T.W.; Oh, Y.S.; Kim, H.J.; Kim, K.H.; Jang, J.H. Magnetoelectric effects of nanoparticulate Pb(Zr0.52Ti0.48)O3–NiFe2O4 composite films. Appl. Phys. Lett. 2006, 89, 102907. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Jang, H.M.; Kim, H.S.; Park, C.G.; Lee, S.G. Strain-mediated magnetoelectric coupling in BaTiO3-Co nanocomposite thin films. Appl. Phys. Lett. 2008, 92, 062908. [Google Scholar] [CrossRef] [Green Version]
- Zavaliche, F.; Zheng, H.; Mohaddes-Ardabili, L.; Yang, S.Y.; Zhan, Q.; Shafer, P.; Reilly, E.; Chopdekar, R.; Jia, Y. Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 2005, 5, 1793. [Google Scholar] [CrossRef] [PubMed]
- Dörr, K.; Thiele, C.; Bilani, O.; Herklotz, A.; Schultz, L. Dynamic strain in magnetic films on piezoelectric crystals. J. Magn. Magn. Mater. 2007, 310, 1182–1184. [Google Scholar] [CrossRef]
- Yang, J.J.; Zhao, Y.G.; Tian, H.F.; Luo, L.B.; Zhang, H.Y.; He, Y.J.; Luo, H.S. Electric field manipulation of magnetization at room temperature in multiferroic CoFe2O4/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructures. Appl. Phys. Lett. 2009, 94, 212504. [Google Scholar] [CrossRef]
- Nan, T.; Hui, Y.; Rinaldi, M.; Sun, N.X. Self-biased 215 MHz magnetoelectric NEMS resonator for ultra-sensitive DC magnetic field detection. Sci. Rep. 2013, 3, 1985. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.P.; Liu, Y.K.; Dong, S.N.; Yin, Y.W.; Yang, S.W.; Li, X.G. Multi-state resistive switching memory with secure information storage in Au/BiFe0.95Mn0.05O3/La5/8Ca3/8MnO3 heterostructure. Appl. Phys. Lett. 2012, 100, 193504. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Lin, Y.; Nan, C.W. A magnetoelectric memory cell with coercivity state as writing data bit. Appl. Phys. Lett. 2010, 96, 162505. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, J.; Cheng, Z.; Zhang, S. The PZT/Ni unimorph magnetoelectric energy harvester for wireless sensing applications. Energy Convers. Manag. 2019, 200, 112084. [Google Scholar] [CrossRef]
- Zhang, C.L.; Chen, W.Q. A wideband magnetic energy harvester. Appl. Phys. Lett. 2010, 96, 123507. [Google Scholar] [CrossRef]
- Patil, D.R.; Zhou, Y.; Kang, J.-E.; Sharpes, N.; Jeong, D.-Y.; Kim, Y.-D.; Kim, K.H.; Priya, S.; Ryu, J. Anisotropic self-biased dual-phase low frequency magneto-mechano-electric energy harvesters with giant power densities. APL Mater. 2014, 2, 046102. [Google Scholar] [CrossRef]
- Ryu, J.; Kang, J.-E.; Zhou, Y.; Choi, S.-Y.; Yoon, W.-H.; Park, D.-S.; Choi, J.-J.; Hahn, B.-D.; Ahn, C.-W. Ubiquitous magneto-mechano-electric generator. Energy Environ. Sci. 2015, 8, 2402–2408. [Google Scholar] [CrossRef]
- Wu, H.; Tatarenko, A.; Bichurin, M.I.; Wang, Y. A multiferroic module for biomechanical energy harvesting. Nano Energy 2021, 83, 105777. [Google Scholar] [CrossRef]
- Li, H.; Zou, Z.; Yang, Y.; Shi, P.; Wu, X.; Ou-Yang, J.; Yang, X.; Zhang, Y.; Zhu, B. Microbridge-structured magnetoelectric sensor array based on pzt/fecosib thin films. IEEE Trans. Magn. 2020, 56, 1–4. [Google Scholar] [CrossRef]
- Hong, N.T.M.; Duc, N.H.; Thang, P.D. Converse magnetoelectric effect in PZT/NiFe/CoFe nanocomposites. Int. J. Nanotechnol. 2013, 10, 206–213. [Google Scholar] [CrossRef]
- Nan, T.; Zhou, Z.; Liu, M.; Yang, X.; Gao, Y.; Assaf, B.A.; Lin, H.; Velu, S.; Wang, X. Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface. Sci. Rep. 2014, 4, 3688. [Google Scholar] [CrossRef] [Green Version]
- He, X.L.; Zhou, J.; Wang, W.B.; Xuan, W.P.; Yang, X.; Jin, H.; Luo, J.K. High performance dual-wave mode flexible surface acoustic wave resonators for UV light sensing. J. Micromech. Microeng. 2014, 24, 055014. [Google Scholar] [CrossRef]
- Liu, W.; Lu, Y.W.; Hu, W.B.; Bai, F.M. Magnetic surface acoustic wave resonator based on flexible substrate. Piezoelectr. Acoustoopt. 2020, 42, 439–443. [Google Scholar]
- Zhao, Y.; Gao, S.; Huang, X.; Huo, W.; Xu, K. Fully flexible electromagnetic vibration sensors with annular field confinement origami magnetic membranes. Adv. Funct. Mater. 2020, 30, 2001553. [Google Scholar] [CrossRef]
- Chen, S.; Yang, X.; Ouyang, J.; Lin, G.; Jin, F.; Tong, B. Fabrication and characterization of shape anisotropy AlN/FeCoSiB magnetoelectric composite films. Ceram. Int. 2014, 40, 3419–3423. [Google Scholar] [CrossRef]
- Zayer, N.K.; Greef, R.; Rogers, K.; Grellier, A.; Pannell, C.N. In situ monitoring of sputtered zinc oxide films for piezoelectric transducers. Thin Solid Films 1999, 352, 179–184. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, C.-J.; Pan, Y.-R. Magnetoelectric effect analysis of magnetostrictive/piezoelectric laminated composites. Acta Phys. Sin.-Chin. Ed. 2018, 67, 077702. [Google Scholar] [CrossRef]
Substrate | Hz | 2 | 3 | 4 | |
---|---|---|---|---|---|
Laminate | |||||
PET | #1 | 0.014 mV | 0.034 mV | 0.037 mV | |
0.020 nW | 0.114 nW | 0.137 nW | |||
#2 | 0.014 mV | 0.032 mV | 0.034 mV | ||
0.020 nW | 0.101 nW | 0.118 nW | |||
In series | 0.026 mV | 0.061 mV | 0.067 mV | ||
0.068 nW | 0.366 nW | 0.447 nW | |||
Si | #1 | 0.011 mV | 0.025 mV | 0.029 mV | |
0.012 nW | 0.065 nW | 0.082 nW | |||
#2 | 0.010 mV | 0.023 mV | 0.024 mV | ||
0.009 nW | 0.053 nW | 0.059 nW | |||
In series | 0.018 mV | 0.045 mV | 0.050 mV | ||
0.032 nW | 0.205 nW | 0.247 nW |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Yang, C.; Huang, B. Design of Flexible FeCoSiB/ZnO Thin-Film Multiferroic Module for Low-Frequency Energy Harvesting. Energies 2023, 16, 5049. https://doi.org/10.3390/en16135049
Guo Y, Yang C, Huang B. Design of Flexible FeCoSiB/ZnO Thin-Film Multiferroic Module for Low-Frequency Energy Harvesting. Energies. 2023; 16(13):5049. https://doi.org/10.3390/en16135049
Chicago/Turabian StyleGuo, Yan, Chen Yang, and Bin Huang. 2023. "Design of Flexible FeCoSiB/ZnO Thin-Film Multiferroic Module for Low-Frequency Energy Harvesting" Energies 16, no. 13: 5049. https://doi.org/10.3390/en16135049