主題:物理學
物理學是一門自然科學,注重於研究物質、能量、空間、時間,尤其是它們各自的性質與彼此之間的相互關係。物理學是關於大自然規律的知識;更廣義地說,物理學探索分析大自然所發生的現象,以了解其規則。
物理學是最古老的學術之一。在過去兩千年裏,物理學與化學、天文學都曾歸屬於自然哲學。直到十七世紀科學革命之後,物理學才成為一門獨立的自然科學。物理學與其它很多跨領域研究有相當的交集,如生物物理學、量子化學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。
物理學是自然科學中最基礎的學科之一。經過嚴謹思考論證,物理學者會提出表述大自然現象與規律的假說。倘若這假說能夠通過大量嚴格的實驗檢驗,則可以被歸類為物理定律。但正如很多其他自然科學理論一樣,這些定律不能被證明,其正確性只能靠著反覆的實驗來檢驗。
稀有氣體是指元素周期表上的18族元素。在常溫常壓下,它們是都是無色無味的單原子氣體,很難進行化學反應。天然存在的稀有氣體有六種,即氦、氖、氬、氪、氙和具放射性的氡等。稀有氣體的特性可以用現代的原子結構理論來解釋:它們的最外電子層的電子已達成八隅體狀態,所以它們非常穩定,極少進行化學反應,至今只成功製備出幾百種稀有氣體化合物。每種稀有氣體的熔點和沸點十分接近,溫度差距小於10 °C,因此它們僅在很小的溫度範圍內以液態存在。經氣體液化和分餾方法可從空氣中獲得氖、氬、氪和氙,而氦氣通常提取自天然氣,氡氣則通常由鐳化合物經放射性衰變後分離出來。
沃爾夫–拉葉星,是一種在正在演化的大質量恆星,質量通常為太陽質量的8-25倍,但直徑並不大一般是太陽的1.5-4倍。大多數WR星是經歷了紅超巨星階段的後期恆星,已經損失了一半以上的質量。但也有一部分恆星是即將演化到超巨星階段的早期恆星,這類WR星一般譜型較晚,但是光度、質量、半徑均遠遠超過演化後期的沃爾夫–拉葉星,它們一般重達太陽的60倍以上,大20倍,更比太陽亮百萬倍,屬於宇宙中最亮的恆星。圖為哈伯太空望遠鏡拍攝到的M1-67星雲,中心是沃爾夫-拉葉星WR 124。
當光波從一種介質傳播到另一種具有不同折射率的介質時,會發生折射現像,其入射角與折射角之間的關係,可以用斯涅爾定律來描述。斯涅爾定律是因荷蘭物理學家威理博·斯涅爾而命名,又稱為「折射定律」。
斯涅爾定律表明,當光波從介質1傳播到介質2時,假若兩種介質的折射率不同,則會發生折射現像,其入射光和折射光都處於同一平面,稱為「入射平面」,並且與界面法線的夾角滿足如下關係:
- ;
其中, 、 分別是兩種介質的折射率, 和 分別是入射光、折射光與界面法線的夾角,分別叫做「入射角」、「折射角」...
宇宙監督假設(cosmic censorship hypothesis):黑洞內部有一個奇異點。通常在這奇異點的外圍有一層事件視界,速度最快的光波也無法逃離到事件視界之外。裸奇異點是缺乏事件視界的奇異點。由於沒有事件視界隔離,物理學者可以觀測到裸奇異點的物理行為。但是,至今為止,物理學者尚未觀測到裸奇異點的蛛絲馬跡。物理學者懷疑,從實際物理的初始條件是否能形成裸奇異點?羅傑·彭羅斯提出的「宇宙監督假設」表明,這是不可能的事。但是,物理學者還不能證明這假設的任何版本為正確無誤。
核心理論: 經典力學 | 運動學 | 靜力學 | 動力學 | 拉格朗日力學 | 哈密頓力學 | 連續介質力學 | 流體力學 | 固體力學 | 電動力學 | 狹義相對論 | 廣義相對論 | 量子力學 | 量子場論 | 量子電動力學 | 量子色動力學 | 量子光學 | 弦理論 | 熱力學 | 統計力學
主要領域: 天體物理學 | 凝聚態物理學 | 原子物理學 | 分子物理學 | 光學 | 幾何光學 | 物理光學 | 原子核物理學 | 粒子物理學 | 電漿體物理學 | 介觀物理學 | 低溫物理學 | 固體物理學 | 晶體學
交叉學科: 天體物理學 | 大氣物理學 | 地球物理學 | 生物物理學 | 物理化學 | 材料科學 | 電子科學 | 計算物理 | 數學物理 | 非線性物理學
背景知識: 參看傳記, 科學史, 和學院介紹.
2020年焦點新聞 下列日期是新聞發布時間,而非事件發表或發現時間
- 10月6日,羅傑·潘洛斯、安德烈婭·蓋茲和賴因哈德·根策爾因對於黑洞的傑出研究獲得諾貝爾物理學獎。
- 6月15日,德國法蘭克福大學教授研究團隊做實驗首次證實九十年前阿諾·索末菲提出的理論:當光子撞擊到單獨分子並且使其發射出電子時,該單獨離子會朝著光源移動。
- 5月6日,歐洲南天天文台研究團隊宣布,在恆星星系HD 167128觀測到距今為止距離地球最近的黑洞。
- 10月8日,因為對於人們了解宇宙演化與地球在宇宙裡的席位做出貢獻,吉姆·皮布爾斯、米歇爾·麥耶和迪迪埃·奎洛茲獲得2019年諾貝爾物理學獎。
- 7月31日,大型強子對撞機的超環面儀器實驗團隊找到光子與光子散射的確切證據,超過背景期望值8.2 個標準差。
- 7月15日,美國NIST研究團隊發展成功當今最準確的時鐘,Al+離子鐘,準確度為1018分之一。
- 5月22日,阿貢國家實驗室實驗團隊發現新超導材料三氫化鑭,其臨界超導溫度為-23C,是至今為止最高溫度。
- 4月10日,事件視界望遠鏡團隊宣布,首次成功觀測到在室女A星系中央的超大質量黑洞。
- 3月29日,麻省理工學院實驗團隊報告,暗物質實驗ABRACADABRA 第一回合並未發現任何軸子存在的蛛絲馬跡。
- 3月21日,雪城大學教授薛爾頓·斯同恩的研究團隊做實驗證實,魅夸克的物質與反物質對於衰變具有不對稱性,這可能是物質宇宙形成的重要因素。
- 3月15日,使用緲子探測器,塔塔基礎研究學院的研究團隊發現,雷暴可以產生高達13億伏特的電壓!
- 1月3日,中國國家航天局的探測器嫦娥四號成功在月球背面南半部的馮·卡門環形山著陸。