Predicate |
Object |
assignee |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_bce787970b69aeb08d159e7c101c9ed7 |
classificationCPCAdditional |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-76888 |
classificationCPCInventive |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C23C14-185 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C23C14-5853 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-76838 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-2855 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-203 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-20 |
classificationIPCInventive |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C23C14-34 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C23C14-54 |
filingDate |
2007-08-22^^<http://www.w3.org/2001/XMLSchema#date> |
inventor |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_ce414c3d83f8aaa3333912e3f8dde583 http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_c7336aa4b642f23bfe109f0d84e4fae1 http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_47ea2c521d22b93294ebe90ac385cb4a http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_34fbbc1bfd7dd994910c27b73897a009 http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_7ea8d90469aaa19efb3dddac7a8b2d19 http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_1710b8922cfa940175c34e79e7cf99c7 http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_634bb90f7e7eb76bfb4bcbf7dcdeb3fc |
publicationDate |
2009-02-26^^<http://www.w3.org/2001/XMLSchema#date> |
publicationNumber |
US-2009050468-A1 |
titleOfInvention |
Controlled surface oxidation of aluminum interconnect |
abstract |
An aluminum interconnect metallization for an integrated circuit is controllably oxidized in a pure oxygen ambient with the optional addition of argon. It is advantageously performed as the wafer is cooled from above 300° C. occurring during aluminum sputtering to less than 100° C. allowing the aluminized wafer to be loaded into a plastic cassette. Oxidation may controllably occur in a pass-through chamber between a high-vacuum and a low-vacuum transfer chamber. The oxygen partial pressure is advantageously in the range of 0.01 to 1 Torr, preferably 0.1 to 0.5 Torr. The addition of argon to a total pressure of greater than 1 Torr promotes wafer cooling when the wafer is placed on a water-cooled pedestal. To prevent oxygen backflow into the sputter chambers, the cool down chamber is not vacuum pumped during cooling and first argon and then oxygen are pulsed into the chamber. |
isCitedBy |
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10858727-B2 http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11674216-B2 http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2023013146-A1 http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11535930-B2 http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2021133635-A1 http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2016013288-A1 http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-108624844-A |
priorityDate |
2007-08-22^^<http://www.w3.org/2001/XMLSchema#date> |
type |
http://data.epo.org/linked-data/def/patent/Publication |