An Entity of Type: PartialDifferentialEquation106670866, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In the calculus of variations and classical mechanics, the Euler–Lagrange equations are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered in the 1750s by Swiss mathematician Leonhard Euler and Italian mathematician Joseph-Louis Lagrange.

Property Value
dbo:abstract
  • Les equacions d'Euler-Lagrange són les condicions sota les quals cert tipus de problema variacional arriba a un extrem. Apareixen sobretot en el context de la mecànica clàssica en relació amb el principi de mínima acció encara que també apareixen en teoria clàssica de camps (electromagnetisme, teoria general de la relativitat). (ca)
  • Eulerova-Lagrangeova rovnice se také často nazývá Eulerova rovnice nebo Lagrangeova rovnice, protože na této rovnici pracovali Leonhard Euler a Joseph Lagrange současně okolo roku 1755. V oboru variačního počtu se jedná o diferenciální rovnici umožňující nalezení extrémály funkcionálu a obvykle bývá užívána při optimalizaci a ve fyzice pro odvozování pohybových rovnic různých objektů. (cs)
  • في حساب المتغيرات معادلة أويلر-لاجرانج (بالإنجليزية: Euler–Lagrange equation)‏ أو معادلة أويلر أو معادلة لاجرانج هي معادلة تفاضلية جزئية من الدرجة الثانية، تم تطويرها من قبل كل من عالمي الرياضيات ليونارد أويلر و جوزيف لويس لاجرانج في خمسينيات القرن الثامن عشر. (ar)
  • Στον λογισμό των μεταβολών, η εξίσωση Όιλερ-Λαγκράνζ είναι μία διαφορική εξίσωση της οποίας οι λύσεις είναι συναρτήσεις για τις οποίες ένα δεδομένο (συνάρτηση συναρτήσεων) παρουσιάζει ακρότατο. Η εξίσωση αναπτύχθηκε για πρώτη φορά από τους μαθηματικούς Λέοναρντ Όιλερ και Ζοζέφ Λουί Λαγκράνζ τη δεκαετία του 1750. Η εξίσωση Όιλερ-Λαγκράνζ έχει σημαντικές εφαρμογές στη θεωρητική φυσική, καθώς αποτελεί τη θεωρητική βάση θεμελίωσης της Λαγκρανζιανής και . (el)
  • In the calculus of variations and classical mechanics, the Euler–Lagrange equations are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered in the 1750s by Swiss mathematician Leonhard Euler and Italian mathematician Joseph-Louis Lagrange. Because a differentiable functional is stationary at its local extrema, the Euler–Lagrange equation is useful for solving optimization problems in which, given some functional, one seeks the function minimizing or maximizing it. This is analogous to Fermat's theorem in calculus, stating that at any point where a differentiable function attains a local extremum its derivative is zero. In Lagrangian mechanics, according to Hamilton's principle of stationary action, the evolution of a physical system is described by the solutions to the Euler equation for the action of the system. In this context Euler equations are usually called Lagrange equations. In classical mechanics, it is equivalent to Newton's laws of motion; indeed, the Euler-Lagrange equations will produce the same equations as Newton's Laws. This is particularly useful when analyzing systems whose force vectors are particularly complicated. It has the advantage that it takes the same form in any system of generalized coordinates, and it is better suited to generalizations. In classical field theory there is an analogous equation to calculate the dynamics of a field. (en)
  • Las ecuaciones de Euler-Lagrange son las condiciones bajo las cuales cierto tipo de problema variacional alcanza un extremo. Aparecen sobre todo en el contexto de la mecánica clásica en relación con el principio de mínima acción, también aparecen en teoría clásica de campos (electromagnetismo y teoría general de la relatividad) y sirve de base para la formulación de integrales de camino para la teoría cuántica de campos. (es)
  • L’équation d'Euler-Lagrange (en anglais, Euler–Lagrange equation ou ELE) est un résultat mathématique qui joue un rôle fondamental dans le calcul des variations. On retrouve cette équation dans de nombreux problèmes réels de minimisation de longueur d'arc, tels que le problème brachistochrone ou bien encore les problèmes géodésiques. Elle est nommée d'après Leonhard Euler et Joseph-Louis Lagrange. (fr)
  • Sraith cothromóidí a leagann síos an gaol idir spleáchas fheidhm Lagrange ar luas, am is spás. Ainmnithe as Leonhard Euler is Joseph-Louis Lagrange, agus tugtar cothromóidí Lagrange orthu freisin. Más eol feidhm Lagrange don chóras, is iad cothromóidí Euler-Lagrange cothromóidí gluaisne an chórais sin. Bunúsach san ardmheicnic. (ga)
  • 오일러-라그랑주 방정식(Euler-Lagrange方程式, Euler–Lagrange equation)은 어떤 함수와 그 도함수에 의존하는 범함수의 극대화 및 정류화 문제를 다루는 미분 방정식이다. 변분법의 기본 정리의 하나이자, 라그랑주 역학에서 근본적인 역할을 한다. 직관적으로, 오일러-라그랑주 방정식은 범함수의 정류점 근처에는 아주 약간 곡선의 모양을 바꾸면 범함수의 값이 바뀌지 않는다는 점을 이용한다. 이는 초급 미적분학에서 미분가능한 함수가 최대, 최소점에서 기울기가 0이라는 정리를 확장한 것이다. 물리학적 관점에서는, 오일러-라그랑주 방정식은 정류점(stationary point)으로 기술된 해밀턴 원리를 구체적으로 구현하는 역할을 한다. 에서 근원적인 위치를 차지하는 해밀턴 원리는 물체의 궤적이 작용의 정류점이라고 가정한다. 이를 뉴턴 역학과 대응시키려면 운동 방정식을 찾아야 하는데, 오일러-라그랑주 방정식이 이 운동 방정식의 역할을 한다. (ko)
  • In de variatierekening is de euler-lagrange-vergelijking (of lagrange-vergelijking) een differentiaalvergelijking, waarvan de oplossingen functies zijn, waarvoor een gegeven functionaal stationair is. De vergelijking werd in de jaren 1750 opgesteld door de Zwitserse wiskundige Leonhard Euler en de Italiaans-Franse wiskundige Joseph Louis Lagrange. Omdat een differentieerbare functionaal stationair is in haar lokale maxima en minima, wordt de euler-lagrange-vergelijking gebruikt bij het oplossen van optimaliseringsproblemen, waarin men, gegeven een bepaalde functionaal, de minimaliserende (of maximaliserende) functie zoekt. Dit is analoog aan in de analyse, die stelt dat als een differentieerbare functie een lokaal extreem bereikt, haar afgeleide gelijk is aan nul. In de lagrangiaanse mechanica wordt de evolutie van een natuurkundig systeem, vanwege het principe van Hamilton van stationaire actie, voor de actie van dit systeem beschreven door de oplossingen van de euler-lagrange-vergelijking. In de klassieke mechanica is de euler-lagrangevergelijking gelijk aan de bewegingswetten van Newton, maar heeft de vergelijking het voordeel dat zij in elk systeem van gegeneraliseerde coördinaten dezelfde vorm aanneemt. (nl)
  • Le equazioni di Eulero-Lagrange (o equazioni variazionali di Eulero) sono equazioni differenziali del secondo ordine che rivestono un ruolo cardine come modello matematico in meccanica classica e in ottimizzazione. Sono state formulate storicamente per la prima volta da Eulero nell'ambito della meccanica newtoniana e studiate per primo da Joseph-Louis Lagrange nel suo trattato Mecánique Analitique. Declinate in meccanica classica, le equazioni di Eulero possono descrivere un sistema meccanico conservativo. In questo contesto si chiamano in particolare equazioni di Lagrange e portano alle equazioni del moto. Il teorema fondamentale della meccanica lagrangiana qui assicura che le equazioni di Lagrange sono equivalenti al secondo principio della dinamica, che mette in relazione la posizione e la velocità di ogni elemento del sistema. Le equazioni di Eulero-Lagrange si possono legare direttamente a un principio di minima azione. Nell'ambito del calcolo delle variazioni la loro soluzione è un punto stazionario per un dato funzionale. Il XIX problema di Hilbert riguarda la funzione di Lagrange; la sua soluzione è stata data da Ennio De Giorgi e John Nash nel 1957. (it)
  • オイラー=ラグランジュ方程式(オイラー=ラグランジュほうていしき、英: Euler–Lagrange equation)は汎関数の停留値を与える関数を求める微分方程式である。オイラーとラグランジュらの仕事により1750年代に発展した。単にラグランジュ方程式、またはラグランジュの運動方程式とも呼ばれる。稀にオイラー方程式と呼ばれることもあるが、完全流体に関する運動方程式の名もオイラー方程式であるので、注意する必要がある。 ニュートンの運動方程式をより数学的に洗練された方法で定式化しなおしたものであり、物理学上最も重要な方程式の一つである。オイラー=ラグランジュ方程式を基礎方程式としたニュートン力学の定式化をラグランジュ形式の解析力学と呼ぶ。 (ja)
  • Równania Eulera-Lagrange’a, równania Lagrange’a – równania cząstkowe drugiego rzędu, których rozwiązaniami są funkcje, dla których funkcjonał (zadany całką oznaczoną) jest stacjonarny. Stanowią podstawowe równania rachunku wariacyjnego. Np. dla funkcjonału zależnego od funkcji jednej zmiennej i jej pierwszej pochodnej równania Eulera-Lagrange’a przyjmują postać: Rozwiązaniami tego równania są funkcje dla których jest stacjonarne, tj. dla funkcji niewiele odchylającej się od funkcji optymalnej wartość funkcjonału zmienia się nieznacznie. Jest to warunkiem koniecznym, żeby przyjmowało dla ekstremum. Postać równań Eulera-Lagrange’a w ogólniejszych przypadkach (wiele funkcji, wiele zmiennych, pochodne wyższych rzędów) omówiono w dalszych rozdziałach artykułu. (pl)
  • Em cálculo de variações, a Equação de Euler-Lagrange é uma equação diferencial em que as soluções são funções nas quais uma dada função é estacionária. Ela foi criada pelos matemáticos Leonhard Euler e Joseph Louis Lagrange na década de 1750. Já que uma função diferencial é estacionária em seus pontos extremos, a Equação de Euler-Lagrange é útil na solução de problemas otimizados em que é necessário buscar o valor máximo ou minimo de uma função. A Equação de Euler-Lagrange é análoga ao em cálculo, em que estabelece que onde uma função diferenciável se liga ao seu extremo local, sua derivada será zero. Na Mecânica de Lagrange, devido ao princípio de Hamilton da ação estacionária, a evolução de um sistema físico é descrito pela solução da Equação de Euler-Lagrange para a ação do sistema. Na mecânica clássica, é equivalente à lei de Newton do movimento, mas possui a vantagem de possuir a mesma forma independente do sistema de coordenadas generalizadas. (pt)
  • Уравне́ния Э́йлера — Лагра́нжа (в физике также уравнения Лагранжа — Эйлера, или уравнения Лагранжа) являются основными формулами вариационного исчисления, c помощью которых ищутся стационарные точки и экстремумы функционалов. В частности, эти уравнения широко используются в задачах оптимизации и совместно с принципом стационарности действия используются для вычисления траекторий в механике. В теоретической физике вообще это (классические) уравнения движения в контексте получения их из написанного явно выражения для действия (лагранжиана). Использование уравнений Эйлера — Лагранжа для нахождения экстремума функционала в некотором смысле аналогично использованию теоремы дифференциального исчисления, утверждающей, что лишь в точке, где первая производная функции обращается в ноль, гладкая функция может иметь экстремум (в случае векторного аргумента приравнивается нулю градиент функции, то есть производная по векторному аргументу). Точнее говоря, это прямое обобщение соответствующей формулы на случай функционалов — функций бесконечномерного аргумента. Уравнения были получены Леонардом Эйлером и Жозефом-Луи Лагранжем в 1750-х годах. (ru)
  • Euler-Lagranges ekvationen används inom en metod i variationskalkylen för att hitta maximum- och minimumvärden. Nämnda metod påminner om - men är mycket mer avancerad än - motsvarande metod för att hitta maximum- och minimumvärden inom differentialkalkylen. Euler-Lagranges ekvation anses ha en central ställning inom variationskalkylen. Ekvationen utvecklades genom samarbete mellan Leonhard Euler och Joseph Louis Lagrange under 1750-talet. Euler-Langrage differentialekvationen ger att följande integral: (1) där , har en stationär punkt om följande Euler-Langrange differentialekvation är uppfylld: (sv)
  • 歐拉-拉格朗日方程(英語:Euler-Lagrange equation)為變分法中的一條重要方程。它是一个二阶偏微分方程。它提供了求泛函的臨界值(平穩值)函數,換句話說也就是求此泛函在其定義域的臨界點的一個方法,與微積分差異的地方在於,泛函的定義域為函數空間而不是 。 该方程由瑞士数学家莱昂哈德·欧拉与意大利数学家约瑟夫·拉格朗日在1750年代提出。 (zh)
  • Рівняння Ейлера — Лагранжа (у фізиці також рівняння Лагранжа — Ейлера або рівняння Лагранжа) є основними формулами варіаційного числення, з допомогою яких шукаються стаціонарні точки і екстремуми функціоналів. Зокрема ці рівняння широко використовуються в задачах оптимізації, і, разом з принципом стаціонарності дії, використовуються для обчислення траєкторій в механіці. Використання рівнянь Ейлера — Лагранжа для знаходження екстремуму функціоналу в деякому сенсі є аналогічним використанню теореми Ферма, яка стверджує, що лише в точці, де перша похідна функції рівна нулю, диференційовна функція може мати екстремум (в разі функцій кількох змінних нулю має бути рівний градієнт функції). Точніше кажучи, це пряме узагальнення відповідної формули на випадок функціоналів — функцій нескінченновимірного аргументу. Рівняння були отримані Леонардом Ейлером і Жозефом-Луї Лагранжа в 1750-их роках. (uk)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 294995 (xsd:integer)
dbo:wikiPageLength
  • 23117 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1120774713 (xsd:integer)
dbo:wikiPageWikiLink
dbp:backgroundColour
  • #ECFCF4 (en)
dbp:borderColour
  • #50C878 (en)
dbp:id
  • p/l057150 (en)
dbp:indent
  • : (en)
dbp:proof
  • The derivation of the one-dimensional Euler–Lagrange equation is one of the classic proofs in mathematics. It relies on the fundamental lemma of calculus of variations. We wish to find a function which satisfies the boundary conditions , , and which extremizes the functional We assume that is twice continuously differentiable. A weaker assumption can be used, but the proof becomes more difficult. If extremizes the functional subject to the boundary conditions, then any slight perturbation of that preserves the boundary values must either increase or decrease . Let be the result of such a perturbation of , where is small and is a differentiable function satisfying . Then define where . We now wish to calculate the total derivative of with respect to ε. It follows from the total derivative that The second line follows from the fact that does not depend on , i.e. . So When we have , and has an extremum value, so that The next step is to use integration by parts on the second term of the integrand, yielding Using the boundary conditions , Applying the fundamental lemma of calculus of variations now yields the Euler–Lagrange equation (en)
  • Given a functional on with the boundary conditions and , we proceed by approximating the extremal curve by a polygonal line with segments and passing to the limit as the number of segments grows arbitrarily large. Divide the interval into equal segments with endpoints and let . Rather than a smooth function we consider the polygonal line with vertices , where and . Accordingly, our functional becomes a real function of variables given by Extremals of this new functional defined on the discrete points correspond to points where Evaluating this partial derivative gives Dividing the above equation by gives and taking the limit as of the right-hand side of this expression yields The left hand side of the previous equation is the functional derivative of the functional . A necessary condition for a differentiable functional to have an extremum on some function is that its functional derivative at that function vanishes, which is granted by the last equation. (en)
dbp:title
  • Calculus of Variations (en)
  • Euler-Lagrange Differential Equation (en)
  • Derivation of the one-dimensional Euler–Lagrange equation (en)
  • Lagrange equations (en)
  • Alternate derivation of the one-dimensional Euler–Lagrange equation (en)
dbp:urlname
  • CalculusOfVariations (en)
  • Euler-LagrangeDifferentialEquation (en)
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • Les equacions d'Euler-Lagrange són les condicions sota les quals cert tipus de problema variacional arriba a un extrem. Apareixen sobretot en el context de la mecànica clàssica en relació amb el principi de mínima acció encara que també apareixen en teoria clàssica de camps (electromagnetisme, teoria general de la relativitat). (ca)
  • Eulerova-Lagrangeova rovnice se také často nazývá Eulerova rovnice nebo Lagrangeova rovnice, protože na této rovnici pracovali Leonhard Euler a Joseph Lagrange současně okolo roku 1755. V oboru variačního počtu se jedná o diferenciální rovnici umožňující nalezení extrémály funkcionálu a obvykle bývá užívána při optimalizaci a ve fyzice pro odvozování pohybových rovnic různých objektů. (cs)
  • في حساب المتغيرات معادلة أويلر-لاجرانج (بالإنجليزية: Euler–Lagrange equation)‏ أو معادلة أويلر أو معادلة لاجرانج هي معادلة تفاضلية جزئية من الدرجة الثانية، تم تطويرها من قبل كل من عالمي الرياضيات ليونارد أويلر و جوزيف لويس لاجرانج في خمسينيات القرن الثامن عشر. (ar)
  • Στον λογισμό των μεταβολών, η εξίσωση Όιλερ-Λαγκράνζ είναι μία διαφορική εξίσωση της οποίας οι λύσεις είναι συναρτήσεις για τις οποίες ένα δεδομένο (συνάρτηση συναρτήσεων) παρουσιάζει ακρότατο. Η εξίσωση αναπτύχθηκε για πρώτη φορά από τους μαθηματικούς Λέοναρντ Όιλερ και Ζοζέφ Λουί Λαγκράνζ τη δεκαετία του 1750. Η εξίσωση Όιλερ-Λαγκράνζ έχει σημαντικές εφαρμογές στη θεωρητική φυσική, καθώς αποτελεί τη θεωρητική βάση θεμελίωσης της Λαγκρανζιανής και . (el)
  • Las ecuaciones de Euler-Lagrange son las condiciones bajo las cuales cierto tipo de problema variacional alcanza un extremo. Aparecen sobre todo en el contexto de la mecánica clásica en relación con el principio de mínima acción, también aparecen en teoría clásica de campos (electromagnetismo y teoría general de la relatividad) y sirve de base para la formulación de integrales de camino para la teoría cuántica de campos. (es)
  • L’équation d'Euler-Lagrange (en anglais, Euler–Lagrange equation ou ELE) est un résultat mathématique qui joue un rôle fondamental dans le calcul des variations. On retrouve cette équation dans de nombreux problèmes réels de minimisation de longueur d'arc, tels que le problème brachistochrone ou bien encore les problèmes géodésiques. Elle est nommée d'après Leonhard Euler et Joseph-Louis Lagrange. (fr)
  • Sraith cothromóidí a leagann síos an gaol idir spleáchas fheidhm Lagrange ar luas, am is spás. Ainmnithe as Leonhard Euler is Joseph-Louis Lagrange, agus tugtar cothromóidí Lagrange orthu freisin. Más eol feidhm Lagrange don chóras, is iad cothromóidí Euler-Lagrange cothromóidí gluaisne an chórais sin. Bunúsach san ardmheicnic. (ga)
  • 오일러-라그랑주 방정식(Euler-Lagrange方程式, Euler–Lagrange equation)은 어떤 함수와 그 도함수에 의존하는 범함수의 극대화 및 정류화 문제를 다루는 미분 방정식이다. 변분법의 기본 정리의 하나이자, 라그랑주 역학에서 근본적인 역할을 한다. 직관적으로, 오일러-라그랑주 방정식은 범함수의 정류점 근처에는 아주 약간 곡선의 모양을 바꾸면 범함수의 값이 바뀌지 않는다는 점을 이용한다. 이는 초급 미적분학에서 미분가능한 함수가 최대, 최소점에서 기울기가 0이라는 정리를 확장한 것이다. 물리학적 관점에서는, 오일러-라그랑주 방정식은 정류점(stationary point)으로 기술된 해밀턴 원리를 구체적으로 구현하는 역할을 한다. 에서 근원적인 위치를 차지하는 해밀턴 원리는 물체의 궤적이 작용의 정류점이라고 가정한다. 이를 뉴턴 역학과 대응시키려면 운동 방정식을 찾아야 하는데, 오일러-라그랑주 방정식이 이 운동 방정식의 역할을 한다. (ko)
  • オイラー=ラグランジュ方程式(オイラー=ラグランジュほうていしき、英: Euler–Lagrange equation)は汎関数の停留値を与える関数を求める微分方程式である。オイラーとラグランジュらの仕事により1750年代に発展した。単にラグランジュ方程式、またはラグランジュの運動方程式とも呼ばれる。稀にオイラー方程式と呼ばれることもあるが、完全流体に関する運動方程式の名もオイラー方程式であるので、注意する必要がある。 ニュートンの運動方程式をより数学的に洗練された方法で定式化しなおしたものであり、物理学上最も重要な方程式の一つである。オイラー=ラグランジュ方程式を基礎方程式としたニュートン力学の定式化をラグランジュ形式の解析力学と呼ぶ。 (ja)
  • Euler-Lagranges ekvationen används inom en metod i variationskalkylen för att hitta maximum- och minimumvärden. Nämnda metod påminner om - men är mycket mer avancerad än - motsvarande metod för att hitta maximum- och minimumvärden inom differentialkalkylen. Euler-Lagranges ekvation anses ha en central ställning inom variationskalkylen. Ekvationen utvecklades genom samarbete mellan Leonhard Euler och Joseph Louis Lagrange under 1750-talet. Euler-Langrage differentialekvationen ger att följande integral: (1) där , har en stationär punkt om följande Euler-Langrange differentialekvation är uppfylld: (sv)
  • 歐拉-拉格朗日方程(英語:Euler-Lagrange equation)為變分法中的一條重要方程。它是一个二阶偏微分方程。它提供了求泛函的臨界值(平穩值)函數,換句話說也就是求此泛函在其定義域的臨界點的一個方法,與微積分差異的地方在於,泛函的定義域為函數空間而不是 。 该方程由瑞士数学家莱昂哈德·欧拉与意大利数学家约瑟夫·拉格朗日在1750年代提出。 (zh)
  • In the calculus of variations and classical mechanics, the Euler–Lagrange equations are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered in the 1750s by Swiss mathematician Leonhard Euler and Italian mathematician Joseph-Louis Lagrange. (en)
  • Le equazioni di Eulero-Lagrange (o equazioni variazionali di Eulero) sono equazioni differenziali del secondo ordine che rivestono un ruolo cardine come modello matematico in meccanica classica e in ottimizzazione. Sono state formulate storicamente per la prima volta da Eulero nell'ambito della meccanica newtoniana e studiate per primo da Joseph-Louis Lagrange nel suo trattato Mecánique Analitique. (it)
  • In de variatierekening is de euler-lagrange-vergelijking (of lagrange-vergelijking) een differentiaalvergelijking, waarvan de oplossingen functies zijn, waarvoor een gegeven functionaal stationair is. De vergelijking werd in de jaren 1750 opgesteld door de Zwitserse wiskundige Leonhard Euler en de Italiaans-Franse wiskundige Joseph Louis Lagrange. (nl)
  • Równania Eulera-Lagrange’a, równania Lagrange’a – równania cząstkowe drugiego rzędu, których rozwiązaniami są funkcje, dla których funkcjonał (zadany całką oznaczoną) jest stacjonarny. Stanowią podstawowe równania rachunku wariacyjnego. Np. dla funkcjonału zależnego od funkcji jednej zmiennej i jej pierwszej pochodnej równania Eulera-Lagrange’a przyjmują postać: Postać równań Eulera-Lagrange’a w ogólniejszych przypadkach (wiele funkcji, wiele zmiennych, pochodne wyższych rzędów) omówiono w dalszych rozdziałach artykułu. (pl)
  • Em cálculo de variações, a Equação de Euler-Lagrange é uma equação diferencial em que as soluções são funções nas quais uma dada função é estacionária. Ela foi criada pelos matemáticos Leonhard Euler e Joseph Louis Lagrange na década de 1750. Na Mecânica de Lagrange, devido ao princípio de Hamilton da ação estacionária, a evolução de um sistema físico é descrito pela solução da Equação de Euler-Lagrange para a ação do sistema. Na mecânica clássica, é equivalente à lei de Newton do movimento, mas possui a vantagem de possuir a mesma forma independente do sistema de coordenadas generalizadas. (pt)
  • Уравне́ния Э́йлера — Лагра́нжа (в физике также уравнения Лагранжа — Эйлера, или уравнения Лагранжа) являются основными формулами вариационного исчисления, c помощью которых ищутся стационарные точки и экстремумы функционалов. В частности, эти уравнения широко используются в задачах оптимизации и совместно с принципом стационарности действия используются для вычисления траекторий в механике. В теоретической физике вообще это (классические) уравнения движения в контексте получения их из написанного явно выражения для действия (лагранжиана). (ru)
  • Рівняння Ейлера — Лагранжа (у фізиці також рівняння Лагранжа — Ейлера або рівняння Лагранжа) є основними формулами варіаційного числення, з допомогою яких шукаються стаціонарні точки і екстремуми функціоналів. Зокрема ці рівняння широко використовуються в задачах оптимізації, і, разом з принципом стаціонарності дії, використовуються для обчислення траєкторій в механіці. Рівняння були отримані Леонардом Ейлером і Жозефом-Луї Лагранжа в 1750-их роках. (uk)
rdfs:label
  • معادلة أويلر-لاغرانج (ar)
  • Equacions d'Euler-Lagrange (ca)
  • Eulerova–Lagrangeova rovnice (cs)
  • Euler-Lagrange-Gleichung (de)
  • Εξίσωση Όιλερ-Λαγκράνζ (el)
  • Ecuaciones de Euler-Lagrange (es)
  • Équation d'Euler-Lagrange (fr)
  • Cothromóidí Euler-Lagrange (ga)
  • Euler–Lagrange equation (en)
  • Equazioni di Eulero-Lagrange (it)
  • 오일러-라그랑주 방정식 (ko)
  • オイラー=ラグランジュ方程式 (ja)
  • Euler-lagrange-vergelijking (nl)
  • Równania Eulera-Lagrange’a (pl)
  • Equação de Euler-Lagrange (pt)
  • Уравнение Эйлера — Лагранжа (ru)
  • Euler-Lagranges ekvationer (sv)
  • Рівняння Ейлера — Лагранжа (uk)
  • 歐拉-拉格朗日方程 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License