An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space. An example is the quadric surface in projective space over the complex numbers C. A quadric has a natural action of the orthogonal group, and so the study of quadrics can be considered as a descendant of Euclidean geometry.

Property Value
dbo:abstract
  • In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space. An example is the quadric surface in projective space over the complex numbers C. A quadric has a natural action of the orthogonal group, and so the study of quadrics can be considered as a descendant of Euclidean geometry. Many properties of quadrics hold more generally for projective homogeneous varieties. Another generalization of quadrics is provided by Fano varieties. (en)
dbo:thumbnail
dbo:wikiPageID
  • 64926134 (xsd:integer)
dbo:wikiPageLength
  • 21110 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1071699768 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space. An example is the quadric surface in projective space over the complex numbers C. A quadric has a natural action of the orthogonal group, and so the study of quadrics can be considered as a descendant of Euclidean geometry. (en)
rdfs:label
  • Quadric (algebraic geometry) (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License