Spatiotemporal Variation of Fractional Vegetation Cover and Its Response to Climate Change and Topography Characteristics in Shaanxi Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Sources and Preprocessing
2.3. Methods
2.3.1. Fractional Vegetation Cover
2.3.2. Vegetation Dynamic Monitoring
2.3.3. Correction Coefficient for Topographic Areas
2.3.4. Geodetector
3. Results
3.1. Spatial and Temporal Variation of FVC in Shaanxi Province
3.2. Changing Trend of FVC in Shaanxi Province
3.3. Response of FVC Variation to Climate Changes
3.4. Response of FVC Variation to Topographic Factors
3.5. Correlation between FVC Variation and Climate and Topographical Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, Y.; Wang, F.; Mu, Q.; Sun, Y.; Cai, H.; Zhou, Z.; Xu, J.; Shi, H. Estimating land use/land cover change impacts on vegetation response to drought under ‘Grain for Green’in the Loess Plateau. Land Degrad. Dev. 2021, 32, 5083–5098. [Google Scholar] [CrossRef]
- Wei, H.; Xiang, Y.; Liu, Y.; Zhang, J. Effects of sod cultivation on soil nutrients in orchards across China: A meta-analysis. Soil Tillage Res. 2017, 169, 16–24. [Google Scholar] [CrossRef]
- Shao, H.; Sun, X.; Wang, H.; Zhang, X.; Xiang, Z.; Tan, R.; Chen, X.; Xian, W.; Qi, J. A method to the impact assessment of the returning grazing land to grassland project on regional eco-environmental vulnerability. Environ. Impact Assess. Rev. 2016, 56, 155–167. [Google Scholar] [CrossRef]
- Zhou, W.; An, Z. Suggestion on Implementation of the Gully and Land Management Program Which Is Equally as Important as the Grain for Green Project. Available online: https://www.cas.cn/xw/zjsd/201409/t20140919_4209929.shtml (accessed on 19 September 2014). (In Chinese).
- Feng, D.; Wang, J.; Fu, M.; Liu, G.; Zhang, M.; Tang, R. Spatiotemporal variation and influencing factors of vegetation cover in the ecologically fragile areas of China from 2000 to 2015: A case study in Shaanxi Province. Environ. Sci. Pollut. Res. 2019, 26, 28977–28992. [Google Scholar] [CrossRef]
- Li, R. The Sloping Land Conversion Program Has Greatly Improved Shaanxi Ecological Environment. Available online: http://lyj.shaanxi.gov.cn/zwxx/mtbd/201909/t20190919_2043856.html (accessed on 19 September 2019). (In Chinese)
- Guowei, P.; Linxin, S.; Qinke, Y.; Xiang, T. Vegetation Coverage in Different Landforms of Shaanxi Province: Spatial and Temporal Variations and Influencing Factors. J. Yangtze River Sci. Res. Inst. 2021, 38, 51–58+76, (Chinese with English Abstract). [Google Scholar]
- Cai, Y.; Zhang, F.; Duan, P.; Jim, C.Y.; Chan, N.W.; Shi, J.; Liu, C.; Wang, J.; Bahtebay, J.; Ma, X. Vegetation cover changes in China induced by ecological restoration-protection projects and land-use changes from 2000 to 2020. Catena 2022, 217, 106530. [Google Scholar] [CrossRef]
- Wang, G.; Innes, J.L.; Lei, J.; Dai, S.; Wu, S.W. China’s forestry reforms. Science 2007, 318, 1556–1557. [Google Scholar] [CrossRef] [PubMed]
- Normile, D. Getting at the roots of killer dust storms. Science 2007, 317, 314–316. [Google Scholar] [CrossRef]
- Zhengchao, R.; Huazhong, Z.; Hua, S.; Xiaoni, L. Climatic and topographical factors affecting the vegetative carbon stock of rangelands in arid and semiarid regions of China. J. Resour. Ecol. 2016, 7, 418–429. [Google Scholar] [CrossRef]
- Berry, S.L.; Farquhar, G.D.; Roderick, M.L. Co-evolution of climate, soil and vegetation. In Encyclopedia of Hydrological Sciences; John Wiley and Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Wang, D.; Yue, D.; Zhou, Y.; Huo, F.; Bao, Q.; Li, K. Drought resistance of vegetation and its change characteristics before and after the implementation of the Grain for Green Program on the Loess Plateau, China. Remote Sens. 2022, 14, 5142. [Google Scholar] [CrossRef]
- Brandt, M.; Rasmussen, K.; Peñuelas, J.; Tian, F.; Schurgers, G.; Verger, A.; Mertz, O.; Palmer, J.R.; Fensholt, R. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nat. Ecol. Evol. 2017, 1, 0081. [Google Scholar] [CrossRef]
- Jiang, M.; He, Y.; Song, C.; Pan, Y.; Qiu, T.; Tian, S. Disaggregating climatic and anthropogenic influences on vegetation changes in Beijing-Tianjin-Hebei region of China. Sci. Total Environ. 2021, 786, 147574. [Google Scholar] [CrossRef]
- Jia, K.; Liang, S.; Wei, X.; Yao, Y.; Yang, L.; Zhang, X.; Liu, D. Validation of Global LAnd Surface Satellite (GLASS) fractional vegetation cover product from MODIS data in an agricultural region. Remote Sens. Lett. 2018, 9, 847–856. [Google Scholar] [CrossRef]
- Liang, S.; Wang, J. Fractional vegetation cover. In Advanced Remote Sensing; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Xu, X.; Fan, W.; Tao, X. The spatial scaling effect of continuous canopy Leaves Area Index retrieved by remote sensing. Sci. China Ser. D 2009, 52, 393–401. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Qi, J.; Marsett, R.; Moran, M.; Goodrich, D.; Heilman, P.; Kerr, Y.; Dedieu, G.; Chehbouni, A.; Zhang, X. Spatial and temporal dynamics of vegetation in the San Pedro River basin area. Agric. For. Meteorol. 2000, 105, 55–68. [Google Scholar] [CrossRef]
- Jiang, Y.; Tang, R.; Jiang, X.; Li, Z.L.; Gao, C. Estimation of soil evaporation and vegetation transpiration using two trapezoidal models from MODIS data. J. Geophys. Res. Atmos. 2019, 124, 7647–7664. [Google Scholar] [CrossRef]
- Lu, A.; Tian, P.; Mu, X.; Zhao, G.; Feng, Q.; Guo, J.; Xu, W. Fuzzy Logic Modeling of Land Degradation in a Loess Plateau Watershed, China. Remote Sens. 2022, 14, 4779. [Google Scholar] [CrossRef]
- Shen, X.; Xue, Z.; Jiang, M.; Lu, X. Spatiotemporal change of vegetation coverage and its relationship with climate change in freshwater marshes of Northeast China. Wetlands 2019, 39, 429–439. [Google Scholar] [CrossRef]
- Liao, C.; Wang, J.; Shang, J.; Huang, X.; Liu, J.; Huffman, T. Sensitivity study of Radarsat-2 polarimetric SAR to crop height and fractional vegetation cover of corn and wheat. Int. J. Remote Sens. 2018, 39, 1475–1490. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, H.; Lu, C.; Gao, B.; Gu, W. Predictions of potential geographical distribution and quality of Schisandra sphenanthera under climate change. PeerJ 2016, 4, e2554. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.-Q.; Li, L.; Li, J.; Liu, C.; Wu, Y.-P.; Gao, S.; Wang, Z.; Feng, G.-L. Impacts of climate change on vegetation pattern: Mathematical modelling and data analysis. Phys. Life Rev. 2022, 43, 239–270. [Google Scholar] [CrossRef]
- Wang, B.; Xu, G.; Li, P.; Li, Z.; Zhang, Y.; Cheng, Y.; Jia, L.; Zhang, J. Vegetation dynamics and their relationships with climatic factors in the Qinling Mountains of China. Ecol. Indic. 2020, 108, 105719. [Google Scholar] [CrossRef]
- Yuan, J.; Xu, Y.; Xiang, J.; Wu, L.; Wang, D. Spatiotemporal variation of vegetation coverage and its associated influence factor analysis in the Yangtze River Delta, eastern China. Environ. Sci. Pollut. Res. 2019, 26, 32866–32879. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.; Yang, L.; Guan, W.; Wang, F.; Liu, Z.; Xu, C. Assessing vegetation response to climatic variations and human activities: Spatiotemporal NDVI variations in the Hexi Corridor and surrounding areas from 2000 to 2010. Theor. Appl. Climatol. 2019, 135, 1179–1193. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.; Zhang, J.; Tao, F.; Chen, Y.; Ding, H. The effect of terrain factors on rice production: A case study in Hunan Province. J. Geogr. Sci. 2019, 29, 287–305. [Google Scholar] [CrossRef]
- Ostendorf, B.; Reynolds, J.F. A model of arctic tundra vegetation derived from topographic gradients. Landsc. Ecol. 1998, 13, 187–201. [Google Scholar] [CrossRef]
- Hengkai, L.; Xiaosheng, L.; Bo, L.; Fashuai, L. Vegetation Coverage Variations and Correlation with Geomorphologic Factors in Red Soil Region: A Case in South Jiangxi Province. Sci. Geogr. Sin. 2014, 34, 103–109, (Chinese with English Abstract). [Google Scholar] [CrossRef]
- Duoduo, Y.; Yanhui, W. Temporal and spatial changes of vegetation coverage and its topographic differentiation in temperate continental semi-arid monsoon climate region. Acta Ecol. Sin. 2021, 41, 1158–1167, (Chinese with English Abstract). [Google Scholar]
- Liu, Y. In the Past 20 Years, the Grain for Green Project in Shaanxi Province Has Achieved Remarkable Results. Available online: https://www.cnr.cn/sxpd/sx/20190905/t20190905_524764317.shtml#:~:text=1999%E5%B9%B4%E8%87%B320,1000%E4%B8%87%E5%86%9C%E6%B0%91%E3%80%82 (accessed on 5 September 2019). (In Chinese).
- Sun, W.; Song, X.; Mu, X.; Gao, P.; Wang, F.; Zhao, G. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agric. For. Meteorol. 2015, 209, 87–99. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, M.a.; Liu, Z.; Warrington, D.N. Investigation of factors controlling the regional-scale distribution of dried soil layers under forestland on the Loess Plateau, China. Surv. Geophys. 2012, 33, 311–330. [Google Scholar] [CrossRef]
- Dengke, L.; Zhao, W. Changes of fractional vegetation coverage after returning farmland to forests and its response to climate in Shaanxi. Chin. J. Ecol. 2020, 39, 1–10, (Chinese with English Abstract). [Google Scholar] [CrossRef]
- Nie, T.; Dong, G.; Jiang, X.; Lei, Y. Spatio-temporal changes and driving forces of vegetation coverage on the loess plateau of Northern Shaanxi. Remote Sens. 2021, 13, 613. [Google Scholar] [CrossRef]
- Qian, C.; Shao, L.; Hou, X.; Zhang, B.; Chen, W.; Xia, X. Detection and attribution of vegetation greening trend across distinct local landscapes under China’s Grain to Green Program: A case study in Shaanxi Province. Catena 2019, 183, 104182. [Google Scholar] [CrossRef]
- Guihua, Y.; Tingbin, Z.; Yixuan, H.; Hong, Y.; Jingji, L.; Xiaojuan, B.; Dong, L. Applicability analysis of four spatial interpolation methods for air temperature. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2020, 47, 115–128, (Chinese with English Abstract). [Google Scholar]
- Linrong, W.; Juanmin, W.; Haijun, L.; Xian, S. Spatiotemporal Variation of Solar Radiation and Sunshine Hours in Shaanxi Province. Bull. Soil Water Conserv. 2010, 30, 212–214, (Chinese with English Abstract). [Google Scholar] [CrossRef]
- Luan, X.; Meiying, D.; Feng, C. Comparison study of spatial interpolation methods based on hourly precipitation data from automatic weather stations. J. Meteorol. Environ. 2017, 33, 34–43, (Chinese with English Abstract). [Google Scholar]
- Fenfen, G.; Jianrong, F.; Dong, Y.; Xiang, G.; Kuifang, G.; Dingrong, Z. Remote sensing estimation of vegetation cover in Changdo County based on image dimidiate pixel model. Soil Water Conserv. China 2010, 30, 65–67, (Chinese with English Abstract). [Google Scholar] [CrossRef]
- Ali, R.; Kuriqi, A.; Abubaker, S.; Kisi, O. Long-term trends and seasonality detection of the observed flow in Yangtze River using Mann-Kendall and Sen’s innovative trend method. Water 2019, 11, 1855. [Google Scholar] [CrossRef]
- Dianlai, W.; Wenping, L.; Xinyuan, H. Trend analysis in vegetation cover in Beijing based on Sen+Mann-Kendall method. Comput. Eng. Appl. 2013, 49, 13–17, (Chinese with English Abstract). [Google Scholar]
- Xiaowei, T.; Kelin, W.; Yuemin, Y.; Chujie, L.; Yanfang, X.; Haitao, Z. Trends in vegetation and their responses to climate and topography in northwest Guangxi. Acta Ecol. Sin. 2014, 34, 3425–3434, (Chinese with English Abstract). [Google Scholar]
- Xuexiong, C.; Rutian, B.; Xiaojun, Z.; Weihong, H. Topographic Differentiation Effect on Vegetation Cover Change in Urban Districts of Taiyuan City. Bull. Soil Water Conserv. 2020, 40, 299–309, (Chinese with English Abstract). [Google Scholar] [CrossRef]
- Jufeng, W.; Liang, H.; Shaojuan, L.; Du, L.; Tao, H.; Qi, C.; Xiaoping, Z.; Baoyuan, L. Photosynthetic vegetation cover response to precipitation on the Inner Mongolian Steppe. Acta Ecol. Sin. 2020, 40, 5620–5629, (Chinese with English Abstract). [Google Scholar]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci. Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Yu, S.; Du, W.; Zhang, X.; Hong, Y.; Liu, Y.; Hong, M.; Chen, S. Spatiotemporal Changes in NDVI and Its Driving Factors in the Kherlen River Basin. Chin. Geogr. Sci. 2023, 33, 377–392. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, Y.; Yu, Y.; Li, F.; Zhang, R.; Li, W. Using the Geodetector Method to Characterize the Spatiotemporal Dynamics of Vegetation and Its Interaction with Environmental Factors in the Qinba Mountains, China. Remote Sens. 2022, 14, 5794. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Q.; Chen, Y.; Zhou, H.; Xiang, Y.; Liu, Z.; Hou, Y. Vegetation Change and Eco-Environmental Quality Evaluation in the Loess Plateau of China from 2000 to 2020. Remote Sens. 2023, 15, 424. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; Mao, F.; Zhang, M.; Zhu, D.e.; He, S.; Huang, Z.; Du, H. Spatiotemporal evolution of fractional vegetation cover and its response to climate change based on MODIS data in the subtropical region of China. Remote Sens. 2021, 13, 913. [Google Scholar] [CrossRef]
- He, J.; Shi, X.; Fu, Y. Identifying vegetation restoration effectiveness and driving factors on different micro-topographic types of hilly Loess Plateau: From the perspective of ecological resilience. J. Environ. Manag. 2021, 289, 112562. [Google Scholar] [CrossRef]
- Wang, X.; Wang, B.; Xu, X.; Liu, T.; Duan, Y.; Zhao, Y. Spatial and temporal variations in surface soil moisture and vegetation cover in the Loess Plateau from 2000 to 2015. Ecol. Indic. 2018, 95, 320–330. [Google Scholar] [CrossRef]
- Grantz, D. Plant response to atmospheric humidity. Plant Cell Environ. 1990, 13, 667–679. [Google Scholar] [CrossRef]
- Xie, B.; Qin, Z.; Wang, Y.; Chang, Q. Monitoring vegetation phenology and their response to climate change on Chinese Loess Plateau based on remote sensing. Trans. Chin. Soc. Agric. Eng. 2015, 31, 153–160. [Google Scholar]
- Zhang, H.; Yuan, N.; Ma, Z.; Huang, Y. Understanding the soil temperature variability at different depths: Effects of surface air temperature, snow cover, and the soil memory. Adv. Atmos. Sci. 2021, 38, 493–503. [Google Scholar] [CrossRef]
- He, Q.; Lu, H.; Yang, K. Soil moisture memory of land surface models utilized in major reanalyses differ significantly from SMAP observation. Earths Future 2023, 11, e2022E–e3215E. [Google Scholar] [CrossRef]
- Liwen, W.; Yaxing, W.; Zheng, N. Analysis of vegetation spatial and temporal variations in Qinghai province based on Remote Sensing. Environ. Sci. 2008, 29, 1754–1760, (Chinese with English Abstract). [Google Scholar] [CrossRef]
Region | Significant Degradation (%) | Slight Degradation (%) | Slight Improvement (%) | Significant Improvement (%) |
---|---|---|---|---|
Shaanxi Province | 18.29 | 7.85 | 40.35 | 33.51 |
LOP area | 12.34 | 2.91 | 35.95 | 48.80 |
GZP area | 29.92 | 34.64 | 24.29 | 11.15 |
QBM area | 22.02 | 5.72 | 50.60 | 21.66 |
Topographic Factor | Classification | Significant Degradation | Non- Significant Degradation | Non- Significant Increase | Significant Increase | Topographic Factor | Classification | Significant Degradation | Non- Significant Degradation | Non- Significant Increase | Significant Increase |
---|---|---|---|---|---|---|---|---|---|---|---|
ALT | Low ALT | 1.58 | 5.62 | 0.49 | 0.22 | ASP | Northward | 0.97 | 1.08 | 0.99 | 1.01 |
Lower ALT | 0.99 | 1.08 | 0.98 | 1.01 | Eastward | 1.01 | 0.93 | 1.00 | 1.01 | ||
Middle ALT | 0.69 | 0.27 | 1.03 | 1.30 | Southward | 1.04 | 1.20 | 0.97 | 0.97 | ||
High ALT | 1.59 | 0.81 | 1.24 | 0.44 | Westward | 0.96 | 0.77 | 1.04 | 1.03 | ||
Higher ALT | 2.50 | 2.44 | 0.85 | 0.02 | RIF | Plain | 1.21 | 3.90 | 0.85 | 0.27 | |
SLO | Low SLO | 1.09 | 2.57 | 0.86 | 0.75 | Plateau | 1.13 | 1.63 | 0.85 | 0.91 | |
Lower SLO | 0.85 | 0.52 | 0.87 | 1.34 | Hill | 0.78 | 0.43 | 0.83 | 1.43 | ||
Middle SLO | 1.03 | 0.44 | 1.18 | 0.90 | Small undulating mountain | 1.11 | 0.45 | 1.26 | 0.74 | ||
High SLO | 1.25 | 0.57 | 1.32 | 0.58 | Medium undulating mountain | 1.40 | 0.69 | 1.31 | 0.48 | ||
Higher SLO | 1.37 | 0.65 | 1.34 | 0.47 | Rugged mountain | 0.91 | 0.00 | 1.65 | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Sun, J.; Wang, M.; Guo, J.; Wei, X.; Shukla, M.K.; Qi, Y. Spatiotemporal Variation of Fractional Vegetation Cover and Its Response to Climate Change and Topography Characteristics in Shaanxi Province, China. Appl. Sci. 2023, 13, 11532. https://doi.org/10.3390/app132011532
Li Y, Sun J, Wang M, Guo J, Wei X, Shukla MK, Qi Y. Spatiotemporal Variation of Fractional Vegetation Cover and Its Response to Climate Change and Topography Characteristics in Shaanxi Province, China. Applied Sciences. 2023; 13(20):11532. https://doi.org/10.3390/app132011532
Chicago/Turabian StyleLi, Yuanyuan, Jingyan Sun, Mingzhu Wang, Jinwei Guo, Xin Wei, Manoj K. Shukla, and Yanbing Qi. 2023. "Spatiotemporal Variation of Fractional Vegetation Cover and Its Response to Climate Change and Topography Characteristics in Shaanxi Province, China" Applied Sciences 13, no. 20: 11532. https://doi.org/10.3390/app132011532