Molecular Dynamics Simulation of Melting of the DNA Duplex with Silver-Mediated Cytosine–Cytosine Base Pair
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Dynamics and Stability of the DNA Double Helix with Either C:C or C:Ag:C Mismatch
3.2. Melting of the DNA Double Helix with Either C:C or C:Ag:C Mismatch
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, H.; Metera, K.L.; Sleiman, H.F. DNA Modified with Metal Complexes: Applications in the Construction of Higher Order metal−DNA Nanostructures. Coord. Chem. Rev. 2010, 254, 2403–2415. [Google Scholar] [CrossRef]
- Park, K.S.; Park, H.G. Technological Applications Arising from the Interactions of DNA Bases with Metal Ions. Curr. Opin. Biotechnol. 2014, 28, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Scharf, P.; Müller, J. Nucleic Acids with Metal-Mediated Base Pairs and Their Applications. ChemPlusChem 2013, 78, 20–34. [Google Scholar] [CrossRef]
- Swasey, S.M.; Gwinn, E.G. Silver-Mediated Base Pairings: Towards Dynamic DNA Nanostructures with Enhanced Chemical and Thermal Stability. New J. Phys. 2016, 18, 045008. [Google Scholar] [CrossRef]
- Albarqouni, Y.; Ali, G.A.; Hairul, A.R.M.; Chong, K.F. On the Way of DNA Metallization: Principle, Methods, and Recent Applications. Chem. Adv. Mater. 2020, 5, 1–14. [Google Scholar]
- Chatterjee, S.; Lou, X.Y.; Liang, F.; Yang, Y.W. Surface-functionalized gold and silver nanoparticles for colorimetric and fluorescent sensing of metal ions and biomolecules. Coord. Chem. Rev. 2022, 459, 214461. [Google Scholar] [CrossRef]
- Ibrahim, N.; Jamaluddin, N.D.; Tan, L.L.; Mohd Yusof, N.Y. A review on the development of gold and silver nanoparticles-based biosensor as a detection strategy of emerging and pathogenic RNA virus. Sensors 2021, 21, 5114. [Google Scholar] [CrossRef]
- Funai, T.; Adachi, N.; Aotani, M.; Wada, S.I.; Urata, H. Effects of metal ions on thermal stabilities of DNA duplexes containing homo-and heterochiral mismatched base pairs: Comparison of internal and terminal substitutions. Nucleosides Nucleotides Nucleic Acids 2020, 39, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Ono, A.; Cao, S.; Togashi, H.; Tashiro, M.; Fujimoto, T.; Machinami, T.; Oda, S.; Miyake, Y.; Okamoto, I.; Tanaka, Y. Specific Interactions between Silver(i) Ions and Cytosine−cytosine Pairs in DNA Duplexes. Chem. Commun. 2008, 39, 4825–4827. [Google Scholar] [CrossRef]
- Chai, Y.; Guo, X.; Leonard, P.; Seela, F. Heterochiral DNA with Complementary Strands with α-d and β-d Configurations: Hydrogen-Bonded and Silver-Mediated Base Pairs with Impact of 7-Deazapurines Replacing Purines. Chem. Eur. J. 2020, 26, 13973–13989. [Google Scholar] [CrossRef]
- Jash, B.; Müller, J. Metal-Mediated Base Pairs: From Characterization to Application. Chem.–Eur. J. 2017, 23, 17166–17178. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Xie, X.; Song, Y.; Sun, L. A review on silver-mediated DNA base pairs: Methodology and application. Biomater. Res. 2022, 26, 9. [Google Scholar] [CrossRef] [PubMed]
- Raju, S.K.; Karunakaran, A.; Kumar, S.; Sekar, P.; Murugesan, M.; Karthikeyan, M. Silver complexes as anticancer agents: A perspective review. Ger. J. Pharm. Biomater. 2022, 1, 6–28. [Google Scholar] [CrossRef]
- Sinha, I.; Fonseca Guerra, C.; Müller, J. A Highly Stabilizing Silver(I)-Mediated Base Pair in Parallel-Stranded DNA. Angew. Chem. Int. Ed. 2015, 54, 3603–3606. [Google Scholar] [CrossRef] [PubMed]
- Johannsen, S.; Megger, N.; Böhme, D.; Sigel, R.K.O.; Müller, J. Solution Structure of a DNA Double Helix with Consecutive Metal-Mediated Base Pairs. Nat. Chem. 2010, 2, 229–234. [Google Scholar] [CrossRef]
- Mandal, S.; Hepp, A.; Müller, J. Unprecedented Dinuclear Silver(i)-Mediated Base Pair Involving the DNA Lesion 1,N6-Ethenoadenine. Dalton Trans. 2015, 44, 3540–3543. [Google Scholar] [CrossRef] [PubMed]
- Polonius, F.-A.; Mü ller, J. An Artificial Base Pair, Mediated by Hydrogen Bonding and Metal-Ion Binding. Angew. Chem. Int. Ed. 2007, 46, 5602–5604. [Google Scholar] [CrossRef]
- Swasey, S.M.; Leal, L.E.; Lopez-Acevedo, O.; Pavlovich, J.; Gwinn, E.G. Silver(I) as DNA Glue: Ag+-Mediated Guanine Pairing Revealed by Removing Watson-Crick Constraints. Sci. Rep. 2015, 5, 10163. [Google Scholar] [CrossRef] [PubMed]
- Berdakin, M.; Taccone, M.I.; Pino, G.A.; Sánchez, C.G. DNA-Protected Silver Emitters: Charge Dependent Switching of Fluo-rescence. Phys. Chem. Chem. Phys. 2017, 19, 5721–5726. [Google Scholar] [CrossRef]
- Megger, D.A.; Müller, J. Silver(I)-Mediated Cytosine Self-Pairing Is Preferred over Hoogsteen-Type Base Pairs with the Artificial Nucleobase 1,3-Dideaza-6-Nitropurine. Nucleosides Nucleotides Nucleic Acids 2010, 29, 27–38. [Google Scholar] [CrossRef]
- Ramazanov, R.R.; Sych, T.S.; Reveguk, Z.V.; Maksimov, D.A.; Vdovichev, A.A.; Kononov, A.I. Ag−DNA Emitter: Metal Nanorod or Supramolecular Complex? J. Phys. Chem. Lett. 2016, 7, 3560–3566. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Kondo, J.; Sychrovský, V.; Ŝebera, J.; Dairaku, T.; Saneyoshi, H.; Urata, H.; Torigoe, H.; Ono, A. Structures, physicochemical properties, and applications of T–Hg II–T, C–Ag I–C, and other metallo-base-pairs. Chem. Commun. 2015, 51, 17343–17360. [Google Scholar] [CrossRef] [PubMed]
- Mistry, L.; El-Zubir, O.; Dura, G.; Clegg, W.; Waddell, P.G.; Pope, T.; Hofer, W.A.; Wright, N.G.; Horrocks, B.R.; Houlton, A. Addressing the properties of “Metallo-DNA” with a Ag (i)-mediated supramolecular duplex. Chem. Sci. 2019, 10, 3186–3195. [Google Scholar] [CrossRef] [PubMed]
- Marzilli, L.G.; Kistenmacher, T.J.; Rossi, M. An extension of the role of O (2) of cytosine residues in the binding of metal ions. Synthesis and structure of an unusual polymeric silver (I) complex of 1-methylcytosine. J. Am. Chem. Soc. 1977, 99, 2797–2798. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, O.; Aoyama, H.; Fujii, A.; Kishimoto, Y.; Obika, S. Crystallographic Structure of Novel Types of AgI-Mediated Base Pairs in Non-canonical DNA Duplex Containing 2’-O, 4’-C-Methylene Bridged. Nucleic Acids. Chem. Eur. J. 2021, 27, 3842–3848. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.N.; Ahmad, S.; Kraatz, H.-B. Consecutive Silver (I) Ion Incorporation into Oligonucleotides containing Cytosine-Cytosine Mispairs. ChemPlusChem 2021, 86, 224–231. [Google Scholar] [CrossRef]
- Bhai, S.; Ganguly, B. Role of pH in the stability of cytosine-cytosine mismatch and canonical AT and GC base pairs mediated with silver ion: A DFT study. Struct. Chem. 2022, 33, 35–47. [Google Scholar] [CrossRef]
- Zhang, A.; Budow-Busse, S.; Leonard, P.; Seela, F. Anomeric and Enantiomeric 2’-Deoxycytidines: Base Pair Stability in the Absence and Presence of Silver Ions. Chem.–Eur. J. 2021, 27, 10574–10577. [Google Scholar] [CrossRef] [PubMed]
- Schönrath, I.; Tsvetkov, V.B.; Zatsepin, T.S.; Aralov, A.V.; Müller, J. Silver (I)-mediated base pairing in parallel-stranded DNA involving the luminescent cytosine analog 1, 3-diaza-2-oxophenoxazine. J. Biol. Inorg. Chem. 2019, 24, 693–702. [Google Scholar] [CrossRef]
- Manghi, M.; Destainville, N. Physics of base-pairing dynamics in DNA. Phys. Rep. 2016, 631, 1–41. [Google Scholar] [CrossRef]
- Singh, A.; Maity, A.; Singh, N. Structure and Dynamics of dsDNA in Cell-like Environments. Entropy 2022, 24, 1587. [Google Scholar] [CrossRef] [PubMed]
- Peyrard, M.; Bishop, A.R. Statistical mechanics of a nonlinear model for DNA denaturation. Phys. Rev. Lett. 1989, 62, 2755–2758. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Singh, N. Effect of salt concentration on the stability of heterogeneous DNA. Phys. A 2015, 419, 328–334. [Google Scholar] [CrossRef]
- Knotts, T.A.; Rathore, N.; Schwartz, D.C.; De Pablo, J.J. A coarse grain model for DNA. J. Chem. Phys. 2007, 126, 084901. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues Leal, M.; Weber, G. Sharp DNA denaturation in a helicoidal mesoscopic model. Chem. Phys. Lett. 2020, 755, 137781. [Google Scholar] [CrossRef]
- Zoli, M. Base pair fluctuations in helical models for nucleic acids. J. Chem. Phys. 2021, 154, 194102. [Google Scholar] [CrossRef] [PubMed]
- Valle-Orero, J.; Wildes, A.R.; Theodorakopoulos, N.; Cuesta-López, S.; Garden, J.L.; Danilkin, S.; Peyrard, M. Thermal denaturation of A-DNA. New J. Phys. 2014, 16, 113017. [Google Scholar] [CrossRef]
- Singh, A.; Singh, N. Pulling short DNA molecules having defects on different locations. Phys. Rev. E 2015, 92, 032703. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.M.; Long, A.S.; Brown, T.; Fox, K.R.; Weber, G. Melting temperature measurement and mesoscopic evaluation of single, double and triple DNA mismatches. Chem. Sci. 2020, 11, 8273–8287. [Google Scholar] [CrossRef]
- Silva, L.G.; Weber, G. Mesoscopic model confirms strong base pair metal mediated bonding for T–Hg2+–T and weaker for C–Ag+–C. Chem. Phys. Lett. 2022, 803, 139847. [Google Scholar] [CrossRef]
- Freeman, G.S.; Hinckley, D.M.; de Pablo, J.J. A coarse-grain three-site-per-nucleotide model for DNA with explicit ions. J. Chem. Phys. 2011, 135, 165104. [Google Scholar] [CrossRef]
- Florescu, A.; Joyeux, M. Thermal and mechanical denaturation properties of a DNA model with three sites per nucleotide. J. Chem. Phys. 2011, 135, 085105. [Google Scholar] [CrossRef] [PubMed]
- Sayar, M.; Avşaroǧlu, B.; Kabakçoǧlu, A. Twist-writhe partitioning in a coarse-grained DNA minicircle model. Phys. Rev. E 2010, 81, 041916. [Google Scholar] [CrossRef] [PubMed]
- Sambriski, E.J.; Ortiz, V.; de Pablo, J.J. Sequence effects in the melting and renaturation of short DNA oligonucleotides: Structure and mechanistic pathways. J. Phys. Condens. Matter 2009, 21, 034105. [Google Scholar] [CrossRef]
- Zhang, F.; Collins, M.A. Model simulations of DNA dynamics. Phys. Rev. E 1995, 52, 4217–4224. [Google Scholar] [CrossRef]
- Drukker, K.; Wu, G.; Schatz, G.C. Model simulations of DNA denaturation dynamics. J. Chem. Phys. 2001, 114, 579–590. [Google Scholar] [CrossRef]
- Ouldridge, T.E.; Louis, A.A.; Doye, J.P.K. Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. J. Chem. Phys. 2011, 134, 085101. [Google Scholar] [CrossRef]
- Wong, K.Y.; Pettitt, B.M. The pathway of oligomeric DNA melting investigated by molecular dynamics simulations. Biophys. J. 2008, 95, 5618–5626. [Google Scholar] [CrossRef] [PubMed]
- Lomzov, A.A.; Vorobjev, Y.N.; Pyshnyi, D.V. Evaluation of the Gibbs free energy changes and melting temperatures of DNA/DNA duplexes using hybridization enthalpy calculated by molecular dynamics simulation. J. Phys. Chem. B 2015, 119, 15221–15234. [Google Scholar] [CrossRef]
- Kundu, S.; Mukherjee, S.; Bhattacharyya, D. Melting of polymeric DNA double helix at elevated temperature: A molecular dynamics approach. J. Mol. Model. 2017, 23, 1–10. [Google Scholar] [CrossRef]
- Chen, X.; Karpenko, A.; Lopez-Acevedo, O. Silver-mediated double helix: Structural parameters for a robust DNA building block. ACS Omega 2017, 2, 7343–7348. [Google Scholar] [CrossRef] [PubMed]
- Mistry, L.; Waddell, P.G.; Wright, N.G.; Horrocks, B.R.; Houlton, A. Transoid and cisoid conformations in silver-mediated cytosine base pairs: Hydrogen bonding dictates argentophilic interactions in the solid state. Inorg. Chem. 2019, 58, 13346–13352. [Google Scholar] [CrossRef] [PubMed]
- Espinosa Leal, L.A.; Karpenko, A.; Swasey, S.; Gwinn, E.G.; Rojas-Cervellera, V.; Rovira, C.; Lopez-Acevedo, O. The role of hydrogen bonds in the stabilization of silver-mediated cytosine tetramers. J. Phys. Chem. Lett. 2015, 6, 4061–4066. [Google Scholar] [CrossRef] [PubMed]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef] [PubMed]
- Ivani, I.; Dans, P.D.; Noy, A.; Pérez, A.; Faustino, I.; Hospital, A.; Walther, J.; Andrio, P.; Goñi, R.; Balaceanu, A.; et al. Parmbsc1: A refined force field for DNA simulations. Nat. Methods 2015, 13, 55. [Google Scholar] [CrossRef]
- Li, P.; Song, L.F.; Merz, K.M. Systematic Parameterization of Monovalent Ions Employing the Nonbonded Model. J. Chem. Theory Comput. 2015, 11, 1645–1657. [Google Scholar] [CrossRef]
- Filho, E.D.; Ruggiero, J.R. H-bond simulation in DNA using a Harmonic Oscillator Isospectral Potential. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 1997, 56, 4486–4488. [Google Scholar] [CrossRef]
- Zou, Y.; Xiang, S.; Dai, C. Investigation on the efficiency and accuracy of methods for calculating melting temperature by molecular dynamics simulation. Comput. Mater. Sci. 2020, 171, 109156. [Google Scholar] [CrossRef]
Angle | θ, (deg) |
---|---|
N3-Ag+-N3* | 163 ± 8 |
Ag+-N3-C2 | 103 ± 7 |
Ag+-N3-C4 | 138 ± 7 |
Silver Ion | Tm Experiment 1, K | Tm MD, K |
---|---|---|
absence | 299.5 | 392 |
presence | 307 | 404 |
temperature shift ΔTm | 7.5 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gusarova, E.B.; Kovaleva, N.A. Molecular Dynamics Simulation of Melting of the DNA Duplex with Silver-Mediated Cytosine–Cytosine Base Pair. Computation 2024, 12, 145. https://doi.org/10.3390/computation12070145
Gusarova EB, Kovaleva NA. Molecular Dynamics Simulation of Melting of the DNA Duplex with Silver-Mediated Cytosine–Cytosine Base Pair. Computation. 2024; 12(7):145. https://doi.org/10.3390/computation12070145
Chicago/Turabian StyleGusarova, Elena B., and Natalya A. Kovaleva. 2024. "Molecular Dynamics Simulation of Melting of the DNA Duplex with Silver-Mediated Cytosine–Cytosine Base Pair" Computation 12, no. 7: 145. https://doi.org/10.3390/computation12070145
APA StyleGusarova, E. B., & Kovaleva, N. A. (2024). Molecular Dynamics Simulation of Melting of the DNA Duplex with Silver-Mediated Cytosine–Cytosine Base Pair. Computation, 12(7), 145. https://doi.org/10.3390/computation12070145