Atmospheric Correction of Satellite Ocean Color Remote Sensing in the Presence of High Aerosol Loads
Abstract
:1. Introduction
2. Methodology and Data
2.1. A Layered Approach for Atmospheric Correction
2.2. The LRSAC Model
2.3. Data
3. Results
3.1. Comparison of the Coverage of the Water-Leaving Reflectance between the LRSAC and the Standard Products
3.2. Validation of the Accuracy of the LRSAC Model
4. Discussion
4.1. The Relationship between the Valid Coverage of Rrs and AOD Values for the LRSAC Model
4.2. The Relationship between the Valid Coverage of Rrs and the Threshold of AOD Maxima for SeaDAS
4.3. The Accuracy of the Standard SeaWiFS Products
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gordon, H.R. Removal of atmospheric effects from the satellite imagery of the oceans. Appl. Opt. 1978, 17, 1631–1636. [Google Scholar] [CrossRef] [PubMed]
- Wang, M. An efficient method for multiple radiative transfer computations and the lookup table generation. J. Quant. Spectr. Rad. Trans. 2003, 78, 471–480. [Google Scholar] [CrossRef]
- Pinkerton, H.M.; Lavender, S.J.; Aiken, J. Validation of SeaWiFS ocean color satellite data using a moored data buoy. J. Geophy. Res. Oceans 2003, 108. [Google Scholar] [CrossRef]
- Jamet, C.; Loisel, H.; Kuchinke, C.P.; Ruddick, K.; Zibordi, G.; Feng, H. Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements. Remote Sens. Environ. 2011, 115, 1955–1965. [Google Scholar] [CrossRef]
- Werdell, P.J.; Bailey, S.W. An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation. Remote Sens. Environ. 2005, 98, 122–140. [Google Scholar] [CrossRef]
- Hu, C.; Feng, L.; Lee, Z. Uncertainties of SeaWiFS and MODIS remote sensing reflectance: Implications from clear water measurements. Remote Sens. Environ. 2013, 133, 168–182. [Google Scholar] [CrossRef]
- Harmel, T.; Chami, M. Estimation of daily photosynthetically active radiation (PAR) in presence of low to high aerosol loads: Application to OLCI-like satellite data. Opt. Express 2016, 24, A1390–A1407. [Google Scholar] [CrossRef]
- Tripathy, M.; Raman, M.; Chauhan, P. Modulation in Ocean Primary Production due to Variability of Photosynthetically Available Radiation under Different Atmospheric Conditions. Int. J. Oceanol. 2014, 2014, 279412. [Google Scholar] [CrossRef] [Green Version]
- Steinmetz, F.; Deschamps, P.Y.; Ramon, D. Atmospheric correction in presence of sun glint: Application to MERIS. Opt. Express 2011, 19, 9783–9800. [Google Scholar] [CrossRef]
- Gordon, H.R.; Castaño, D.J. Coastal Zone Color Scanner atmospheric correction algorithm: Multiple scattering effects. Appl. Opt. 1987, 26, 2111–2122. [Google Scholar] [CrossRef]
- Gordon, H.R.; Wang, M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Appl. Opt. 1994, 33, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Gordon, H.R.; Wang, M. Surface-roughness considerations for atmospheric correction of ocean color sensors. II: Error in the retrieved water-leaving radiance. Appl. Opt. 1992, 31, 4261–4267. [Google Scholar] [PubMed]
- Wang, M. The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness. Int. J. Remote Sens. 2002, 23, 2693–2702. [Google Scholar] [CrossRef]
- Wang, M. A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure. Int. J. Remote Sens. 2005, 26, 5651–5663. [Google Scholar] [CrossRef]
- Siegel, D.A.; Wang, M.; Maritorena, S.; Robinson, W. Atmospheric correction of satellite ocean color imagery: The black pixel assumption. Appl. Opt. 2000, 39, 3582–3591. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.; Gordon, H.R. Analysis of the influence of A-band absorption on atmospheric correction of ocean color imagery. Appl. Opt. 1995, 34, 2068–2080. [Google Scholar] [CrossRef] [PubMed]
- Domsta, J. Radiance reflectance of homogeneous plane parallel layers. Oceanologia 1993, 34, 5–12. [Google Scholar]
- Gordon, H.R.; Castaño, D.J. Aerosol analysis with the Coastal Zone Color Scanner: A simple method for including multiple scattering effects. Appl. Opt. 1989, 28, 1320–1326. [Google Scholar] [CrossRef]
- Wang, M. Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing. Appl. Opt. 2006, 45, 8951–8963. [Google Scholar] [CrossRef]
- Moulin, C.; Gordon, H.R.; Chomko, R.M.; Banzon, V.F.; Evan, R.H. Atmospheric correction of ocean color imagery through thick layers of Saharan dust. Geophy. Res. Lett. 2001, 28, 5–8. [Google Scholar] [CrossRef]
- Shanmugan, P.; Ahn, Y. New atmospheric correction technique to retrieve the ocean colour from SeaWiFS imagery in complex coastal waters. J. Opt. A Pure Appl. Opt. 2007, 9, 511–530. [Google Scholar] [CrossRef] [Green Version]
- Bailey, S.W.; Franz, B.A.; Werdell, P.J. Estimations of near-infrared water-leaving reflectance for satellite ocean color data processing. Opt. Express 2010, 18, 7521–7527. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Pan, D.; Hao, Z.; Chen, J.; Tao, B.; Zhu, Q. A potentially universal algorithm for estimating aerosol scattering reflectance from satellite remote sensing data. Remote Sens. Environ. 2014, 142, 131–140. [Google Scholar] [CrossRef]
- Fan, Y.; Li, W.; Gatebe, C.K.; Jamet, C.; Zibordi, G.; Schroeder, T.; Stamnes, K. Atmospheric correction and aerosol retrieval over coastal waters using multilayer neural networks. Remote Sens. Environ. 2017, 199, 218–240. [Google Scholar] [CrossRef]
- Gordon, H.R. Radiative transfer: A technique for simulating the ocean in satellite remote sensing calculation. Appl. Opt. 1976, 15, 1974–1979. [Google Scholar] [CrossRef]
- Hu, B.; Lucht, W.; Strahler, A.H. The interrelationship of atmospheric correction of reflectances and surface BRDF retrieval: A sensitivity study. IEEE Trans. Geosci. Remote Sens. 1999, 37, 724–738. [Google Scholar]
- Gao, B.C.; Montes, M.J.; Ahmad, Z.; Davis, C.O. Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space. Appl. Opt. 2000, 39, 887–896. [Google Scholar] [CrossRef] [Green Version]
- Kokhanovsky, A.A.; Mayer, B.; Rozanov, V.V. A parameterization of the diffuse transmittance and reflectance for aerosol remote sensing problems. Atmos. Res. 2005, 73, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Mattar, C.; Franch, B. Atmospheric correction of optical imagery from MODIS and Reanalysis atmospheric products. Remote Sens. Environ. 2010, 114, 2195–2210. [Google Scholar] [CrossRef]
- Bilal, M.; Nichol, J.E.; Bleiweiss, M.P.; Dubois, D. A Simplified high resolution MODIS Aerosol Retrieval Algorithm (SARA) for use over mixed surfaces. Remote Sens. Environ. 2013, 136, 135–145. [Google Scholar] [CrossRef]
- He, T.; Liang, S.; Wang, D.; Wu, H.; Yu, Y.; Wang, J. Estimation of surface albedo and directional reflectance from Moderate Resolution Imaging Spectroradiometer (MODIS) observations. Remote Sens. Environ. 2012, 119, 286–300. [Google Scholar] [CrossRef] [Green Version]
- Vermote, E.F.; Tanré, D.; Deuzé, J.L.; Herman, M.; Morcrette, J.J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Lacis, A.A.; Hansen, J.E. A parameterization for the absorption of solar radiation in the Earth’s atmosphere. J. Atmos. Sci. 1974, 31, 118–133. [Google Scholar] [CrossRef]
- Wang, M. Atmospheric correction of ocean color sensors: Computing atmospheric diffuse transmittance. Appl. Opt. 1999, 38, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Fraser, R.S.; Mattoo, S.; Yeh, E.N.; McClain, C.R. Algorithm for atmospheric and glint corrections of satellite measurements of ocean pigment. J. Geophy. Res. 1997, 102, 17107–17118. [Google Scholar] [CrossRef] [Green Version]
- Kotchenova, S.Y.; Vermote, E.F.; Matarrese, R.; Klemm, F.J. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path Radiance. Appl. Opt. 2006, 45, 6762–6774. [Google Scholar]
Wavebands | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Mean Rm (sr−1) | 0.011 | 0.0087 | 0.0056 | 0.0032 | 0.0014 | 0.00011 |
Mean Rsat (sr−1) | 0.011 | 0.0087 | 0.0058 | 0.0036 | 0.0014 | 0.00014 |
STD of Rm (sr−1) | 0.0014 | 0.00099 | 0.00053 | 0.00031 | 0.00015 | 0.00002 |
STD of Rsat (sr−1) | 0.00093 | 0.00065 | 0.00038 | 0.00031 | 0.00025 | 0.00005 |
MRE (%) | −1.5 | 1.4 | 5.7 | 12.0 | 5.9 | 22.0 |
ARE (%) | 15.33 | 14.93 | 15.01 | 19.73 | 23.79 | 46.99 |
RMSE (sr−1) | 0.00191 | 0.00151 | 0.00105 | 0.00071 | 0.00045 | 0.00032 |
Wavebands | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Mean Rm (sr−1) | 0.0062 | 0.0057 | 0.0053 | 0.0043 | 0.0034 | 0.0012 |
Mean Rsat (sr−1) | 0.0060 | 0.0056 | 0.0051 | 0.0042 | 0.003 | 0.0010 |
STD of Rm (sr−1) | 0.0030 | 0.0023 | 0.0016 | 0.0018 | 0.0028 | 0.0014 |
STD of Rsat (sr−1) | 0.0026 | 0.0020 | 0.0014 | 0.0013 | 0.0020 | 0.0010 |
MRE (%) | 1.7 | 5.6 | 0.57 | 3.3 | −0.04 | 1.3 |
ARE (%) | 28.42 | 26.26 | 23.15 | 25.86 | 31.15 | 40.56 |
RMSE (sr−1) | 0.00253 | 0.00235 | 0.00239 | 0.00242 | 0.00279 | 0.00257 |
Wavebands | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
MOBY-MRE (%) | 9.16 | 9.08 | 10.09 | 1.98 | 4.51 | 12.63 |
MOBY-ARE (%) | 15.49 | 15.07 | 14.89 | 13.97 | 17.68 | 39.64 |
MOBY-RMSE (sr−1) | 0.0016 | 0.0013 | 0.00091 | 0.00057 | 0.00031 | 0.00016 |
NOMAD-MRE (%) | −7.12 | −71.17 | −72.18 | −72.74 | 1.05 | −70.21 |
NOMAD-ARE (%) | 28.63 | 23.79 | 20.55 | 22.63 | 24.02 | 43.93 |
NOMAD-RMSE (sr−1) | 0.0017 | 0.0015 | 0.0015 | 0.0016 | 0.0018 | 0.00097 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Z.; Tao, B.; Chen, P.; Chen, J.; Hao, Z.; Zhu, Q.; Huang, H. Atmospheric Correction of Satellite Ocean Color Remote Sensing in the Presence of High Aerosol Loads. Remote Sens. 2020, 12, 31. https://doi.org/10.3390/rs12010031
Mao Z, Tao B, Chen P, Chen J, Hao Z, Zhu Q, Huang H. Atmospheric Correction of Satellite Ocean Color Remote Sensing in the Presence of High Aerosol Loads. Remote Sensing. 2020; 12(1):31. https://doi.org/10.3390/rs12010031
Chicago/Turabian StyleMao, Zhihua, Bangyi Tao, Peng Chen, Jianyu Chen, Zengzhou Hao, Qiankun Zhu, and Haiqing Huang. 2020. "Atmospheric Correction of Satellite Ocean Color Remote Sensing in the Presence of High Aerosol Loads" Remote Sensing 12, no. 1: 31. https://doi.org/10.3390/rs12010031